Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Animal models of pediatric disease can experience early onset and aggressive disease progression. Clinically relevant therapy delivery to young mouse models can be technically difficult. This protocol describes a non-invasive intravenous injection method for newborn mice within the first two postnatal days of life.
Intravenous injection is a clinically applicable manner to deliver therapeutics. For adult rodents and larger animals, intravenous injections are technically feasible and routine. However, some mouse models can have early onset of disease with a rapid progression that makes administration of potential therapies difficult. The temporal (or facial) vein is just anterior to the ear bud in mice and is clearly visible for the first two days after birth on either side of the head using a dissecting microscope. During this window, the temporal vein can be injected with volumes up to 50 μl. The injection is safe and well tolerated by both the pups and the dams. A typical injection procedure is completed within 1-2 min, after which the pup is returned to the home cage. By the third postnatal day the vein is difficult to visualize and the injection procedure becomes technically unreliable. This technique has been used for delivery of adeno-associated virus (AAV) vectors, which in turn can provide almost body-wide, stable transgene expression for the life of the animal depending on the viral serotype chosen.
Delivery of therapeutics to the central nervous system (CNS) in murine models of pediatric disease remains a challenge. Mice that model newborn disease states are undersized and developmentally immature, and therefore can be difficult to directly inject in appropriate structures within the CNS. Intravascular injection of therapeutic agents is a non-invasive, well tolerated method to deliver cells, drugs, or viral vectors to the entire body including the CNS1-5 and retina3,5-9. Previous publications describe temporal face vein injection using a transilluminator10,11, without a dissection microscope11,12, or requiring two individuals to inject10. The injection technique described in this protocol is advantageous because a single individual can inject pups, and the light source to view the temporal vein is not touching the pup, eliminating the need for surgical tape or the attachment of a pup to a fixed surface such as a transilluminator11. Delivery of adeno-associated viral vector serotype 9 (AAV9) in mice produces robust expression in neurons and astrocytes throughout the brain and spinal cord (Figure 1). Intravascular delivery of viral vectors into the superficial temporal facial vein has been reliably used in various studies in neonatal mice to treat the pediatric neuromuscular disorder Spinal Muscular Atrophy (SMA)2,4,13,14 and ultimately increased the lifespan of treated mice.
Intravascular injection of neonatal mice also effectively targets the peripheral nervous system and peripheral organs (Figure 2). Following injection of AAV, transduction of dorsal root ganglia, liver, heart, skeletal muscle, lung, and myenteric plexus of the gut has been observed1,3,6,7,15. Widespread transduction of the CNS and periphery makes this method of injection ideal for diseases requiring global expression of a transgene, such as Gaucher’s disease16 and other lysosomal storage diseases17,18, Batten’s disease and related neuronal ceroid lipofuscinoses,19 and Bardet-Biedl syndrome, a genetic multisystem disorder with onset of symptoms occurring in early childhood20. Intravascular injection into neonatal mice should also be considered as a novel method of modeling system-wide pediatric diseases. This technique has been translated to larger animal models5,21 and intravascular injection already exists as a clinically acceptable method of delivering therapeutics.
The current protocol describes a simple, efficient method of delivering agents to neonatal mice through the superficial temporal face vein no later than postnatal day 2. Injection can be completed by a single, practiced individual and is well tolerated by both the pups and the dams. Pups experience minimal distress and recover quickly. Importantly, successful injection will result in global delivery of the agent administered. This protocol is appropriate for delivery of viral vectors, pharmaceutical agents or cells to newborn mice.
All procedures listed in the protocol have been approved Institute for Animal Use and Care committee (IACUC) of the Ohio State University.
1. Preparation of Workspace
2. Injection Procedure
3. Post-injection
During a proper injection, the vein should momentarily turn clear, or blanch. If injecting dye the entire pup should turn blue within seconds. If an improper injection has occurred, there is often a concentrated subcutaneous bolus in the head or neck and injectant may leak out of the injection site. Improper injections may also result in the appearance of bruising around the throat. Pups that receive subcutaneous injections (i.e. the injection was not fully delivered in the vein) generally experience no ill side...
Intravascular delivery of agents to the CNS or throughout the body is difficult in neonatal murine models of disease. The described protocol is a quick, relatively non-invasive way to intravenously administer solutions into neonatal mice with minimal equipment requirements. Though the temporal face vein can be viewed by the naked eye, injections may have greater accuracy with the use of the microscope and fiber-optic light source, especially for an unpracticed injector. Intravascular injections in neonatal mice have a hi...
The authors have nothing to disclose.
The authors wish to acknowledge the NINDS, FightSMA, and Families of SMA for financial support. SEGL is supported by NINDS training grant #5T32NS077984-02.
Name | Company | Catalog Number | Comments |
Thinpro insulin syringe | Terumo | SS30M3009 | 3/10 cc, 3/8" needle, 30 G, 1 per mouse |
Evans blue dye | Sigma-Aldrich | E2129 | Dilute to 1% with 1x Phosphate Buffered Saline |
Cotton tipped applicators | Fisher Scientific | 23-400-101 | |
Fiber optic light source | Fisher Scientific | 12-562-36 | |
Dissecting microscope |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone