Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes in detail the method for generating neural progenitors from embryonic stem cells using a serum-free monolayer method. These progenitors can be used to derive mature neural cell types or to study the process of neural specification and is amenable to multiwell format scaling for compound screening.
The ability to differentiate mouse embryonic stem cells (ESC) to neural progenitors allows the study of the mechanisms controlling neural specification as well as the generation of mature neural cell types for further study. In this protocol we describe a method for the differentiation of ESC to neural progenitors using serum-free, monolayer culture. The method is scalable, efficient and results in production of ~70% neural progenitor cells within 4 - 6 days. It can be applied to ESC from various strains grown under a variety of conditions. Neural progenitors can be allowed to differentiate further into functional neurons and glia or analyzed by microscopy, flow cytometry or molecular techniques. The differentiation process is amenable to time-lapse microscopy and can be combined with the use of reporter lines to monitor the neural specification process. We provide detailed instructions on media preparation and cell density optimization to allow the process to be applied to most ESC lines and a variety of cell culture vessels.
Embryonic stem cells are pluripotent cells derived from the early embryo with the capacity to proliferate indefinitely in vitro while retaining the ability to differentiate into all adult cell types following reintroduction into an appropriate stage embryo (by forming a chimaera), injection into syngeneic or immunocompromised hosts (by forming a teratoma) or in vitro subject to appropriate cues1. The in vitro differentiation of mouse embryonic stem cells into neural lineages was first described in 1995 and involved the formation of multicellular suspension aggregates (embryoid bodies, EBs) in serum-containing media supplemented with the morphogen retinoic acid2-4. Since then a variety of protocols have been developed to allow neural differentiation5. Many still utilize aggregation, others co-culture with inducing cell types and several involve the use of serum-free media. All protocols have advantages and disadvantages and the precise nature of neural or neuronal cells produced also varies according to the protocol used.
The ideal protocol would be robust, scalable and make use of fully defined media and substrates, be amenable to non-invasive monitoring of the differentiation process and result in the generation of pure populations of neural progenitors able to be patterned by external cues and to differentiate into all neuronal and glial subtypes with high efficiency and yield in a relatively short time. In the last dozen years we have been using a method for generating neural progenitors and neurons from mouse ESC in a low density, serum-free adherent monolayer culture6-10. This protocol fulfils many of the criteria set out above: in our hands the efficiency of differentiation has been quite consistent over many years and a variety of cell lines, it can be scaled up or down (we successfully use vessels from 96-well plates to 15 cm diameter dishes) and the media used are well-defined. The process is amenable to timelapse microscopy for the monitoring of the differentiation and a variety of patterning cues can be added to induce the generation of distinct types of neuronal subtypes (e.g., Shh and Fgf8 for dopaminergic neurons6).
Nevertheless, there are some challenges to the successful application of this protocol. One of the key aspects is careful preparation of the media. We always prepare the media in-house despite the availability of commercial alternatives. One of the supplements used (N2; see Protocol) has modifications over the standard commercially available versions. Finally, one of the most important steps for successful application of this method is the optimal cell density at plating. This is mainly because while the autocrine nature of one of the inducing signals (Fgf411) requires that sufficient cells are present to allow optimal viability and differentiation, at too high densities differentiation is impaired (possibly in part due to autocrine production of LIF12). It is therefore important that both media preparation and cell plating are performed carefully and consistently to ensure optimal results.
1. Media Preparation
NOTE: The protocol relies on the use of a mix of two separate media: DMEM/F12 supplemented with modified N2 supplement and Neurobasal supplemented with B27 supplement, typically in a 1:1 ratio.
2. Plating the Cells
NOTE: This protocol applies equally to mouse ESC grown in 10% serum with leukemia inhibitory factor (LIF), serum replacement with LIF or serum-free media with LIF and bone morphogenetic protein 4 (BMP4) or MEK and GSK3 inhibitors (2i media) with or without LIF. However, the timing and efficiency of the differentiation may vary depending on the media and cells (see discussion). For the experiments shown here we used the 46C mouse ESC line (that has an EGFP reporter knocked into one of the endogenous Sox1 alleles), grown in GMEM with 10% serum and LIF. For optimal results it is important that cells are dissociated and replated in the N2B27 media; simply changing of media from GMEM/serum/LIF to N2B27 always results in a reduced differentiation efficiency compared to replating the cells.
3. Immunofluorescent Staining
NOTE: The protocol can be applied to any vessel type. The volume of each reagent is described per well of 6-well plate and can be scaled to any surface area. Replating is not recommended due to the low viability afterwards.
In this experiment, we used the 46C cell line14, mouse embryonic stem cells with an endogenous Sox1-GFP reporter, to track neural differentiation. By using this cell line, expression of Sox1, a marker for neural progenitor, can be detected by green fluorescence. Plating density is a critical factor to achieve neuronal differentiation. Mouse embryonic stem cells were plated in 6-well plate at different densities varying from 10,500 to 88,500 cells/cm2. Figure 1A shows differentiation...
The monolayer neural differentiation protocol has been in use for over a decade6. The protocol is highly efficient, composed of defined medium, and done in a monolayer system which makes the system more applicable for preclinical (e.g., drug screening) uses. However, there are some critical factors that determine differentiation efficiency. This article points out those factors and the solution for each obstacle.
Density of the cells after plating in the differentiation con...
The authors have nothing to disclose.
Work was funded by a Development and Promotion of Science and Technology scholarship from the Thai Ministry for Education to W.W. and grants from Tenovus and the Anonymous Trust to M.P.S.
Name | Company | Catalog Number | Comments |
Fetal bovine serum | Life Technologies | 10270-106 | |
DMEM/F12 | Life Technologies | 11320-074 | |
Neurobasal medium | Life Technologies | 21103-049 | |
StemPro Accutase Cell Dissociation Reagent | Life Technologies | A11105-01 | |
B-27 Supplement, serum free | Life Technologies | 17504-044 | |
Insulin | Sigma | I6634 | Reconstitute with sterile 0.01 M HCl |
Apo-transferrin | Sigma | T1147 | Reconstitute with sterile water |
Progesterone | Sigma | P8783 | Reconstitute with ethanol |
Putrescine | Sigma | P5780 | Reconstitute with sterile water |
Sodium selenite | Sigma | S5261 | Reconstitute with sterile water |
Bovine albumin fraction V | Life Technologies | 15260-037 | |
L-Glutamine | Life Technologies | 25030-081 | Make sure it is completely dissolved before use as glutamine is usually sedimented |
Gelatine | Sigma | G1890 | |
6-well tissue culture dish | Thermo Scientific | 140675 | |
24-well tissue culture dish | Thermo Scientific | 142475 | |
96-well tissue culture dish | Thermo Scientific | 167008 | |
GMEM | Life Technologies | 11710-035 | |
MEM Non-essential amino acids solution | Life Technologies | 11140-050 | |
Sodium pyruvate | Life Technologies | 11360-070 | |
2-mercaptoethanol | Sigma | M7522 | |
Leukaemia inhibitory factor | prepared in-house as in Smith 1991 Journal of Tissue Culture Methods | ||
Tween-20 | Sigma | P1379 | |
4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) | Sigma | D9542 | Protect from light |
Mouse anti βIII tubulin IgG antibody | Covance | MMS-435P | |
Fluorescence-labelled anti-mouse IgG antibody | Life Technologies | A31571 | Protect from light |
25 cm2 tissue culture flask | Thermo Scientific | 156367 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone