Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol provides a simple and efficient way to propagate human pluripotent stem cells (hPSCs) using only conditioned media derived from the human placenta in a gelatin-coated dish without additional exogenous supplementation or hPSC-specific synthetic substrata.
The propagation of human pluripotent stem cells (hPSCs) in conditioned medium derived from human cells in feeder-free culture conditions has been of interest. Nevertheless, an ideal humanized ex vivo feeder-free propagation method for hPSCs has not been developed; currently, additional exogenous substrates including basic fibroblast growth factor (bFGF), a master hPSC-sustaining factor, is added to all of culture media and synthetic substrata such as Matrigel or laminin are used in all feeder-free cultures. Recently, our group developed a simple and efficient protocol for the propagation of hPSCs using only conditioned media derived from the human placenta on a gelatin-coated dish without additional exogenous supplementation or synthetic substrata specific to hPSCs. This protocol has not been reported previously and might enable researchers to propagate hPSCs efficiently in humanized culture conditions. Additionally, this model obviates hPSC contamination risks by animal products such as viruses or unknown proteins. Furthermore, this system facilitates easy mass production of hPSCs using the gelatin coating, which is simple to handle, dramatically decreases the overall costs of ex vivo hPSC maintenance.
The goal of this protocol is the propagation of human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) in fully humanized ex vivo feeder-free conditions without requiring additional exogenous supplementation and synthetic substrates. To date, the development of ex vivo hPSC culture models, that enable the introduction of culture products to the clinic, has been a major concern in stem cell research. Specifically, two critical problems need to be addressed. First, a humanized ex vivo culture system for the propagation of hPSCs that obviates the risk of contamination by animal cell products is needed. Second, a feeder-free culture model is needed to facilitate easy and economic mass production of hPSCs. For therapeutic applications of hPSCs, it is necessary to identify the factors that regulate their self-renewal and differentiation.
Since Xu et al. initially reported the feasibility of using conditioned media (CM) derived from mouse embryonic fibroblasts (MEF) to grow hESCs on Matrigel1, many studies have examined optimal ex vivo propagation methods for hPSCs2-4. However, an ideal humanized ex vivo feeder-free hPSC propagation system has not been developed because current methods require additional exogenous substrates including bFGF and insulin, well-known hPSC-sustaining factors, in culture media5-7. Moreover, synthetic substrata such as Matrigel or laminin are used in all feeder-free cultures.
The rationale behind the development and use of this protocol is based on our previous studies showing that human placenta chorion cells excellently support the propagation of hPSCs without bFGF supplementation8-11. This protocol has a number of advantages including its simplicity with respect to handling and its cost-effectiveness, and it is a near-perfect humanized culture that enables hPSC propagation without exogenous synthetic substrates. The application of human placenta-derived CM (hPCCM) for hPSCs involves 3 steps. First, chorion cells are isolated from the human placenta and cultured. Second, hPCCM is produced from cultured cells. Third, hPSCs are cultured using hPCCM and their characteristics are confirmed.
This protocol will facilitate clinical applications of hPSCs and studies of the mechanisms of hPSC proliferation and attachment. In this paper, the protocol for the successful propagation of hPSCs in hPCCM on a gelatin-coated dish is presented.
Access restricted. Please log in or start a trial to view this content.
Ethics statement: The human placenta study was conducted prospectively, with the approval of the Institutional Review Board for human research of the Korea University (AN09085-001). All experiments were performed in a Clean Germ-Free Room facility at the Korea University Medical Center. The experimental design and procedures using hPSCs were approved by the Institutional Review Board of the Korea University Medical Center (AN12277-003).
1. Preparation of Instruments, Culture Media, and Dishes
2. Cell Isolation from Human Placenta
3. Harvesting Human Placenta-derived Cells Conditioned Medium (hPCCM)
4. Culture of Human Embryonic Stem Cells (hESCs) and Induction of Pluripotent Stem Cells (iPSCs)
5. Characterization of Human Pluripotent Stem Cells
NOTE: Characterize hPSCs using several methods, such as alkaline phosphatase staining, immunocytochemistry, Quantitative real-time PCR (qRT-PCR), and western blotting.
Access restricted. Please log in or start a trial to view this content.
One advantage of this hPSC propagation method is that it uses components secreted from human cells. A most ciritical step in the protocol is the isolation and culture of human placenta-derived cells. This requires and accurate dissection from a precise part of HPC plate villi. Figure 1 shows the procedure for human placenta-derived cell isolation. This process is simple and convenient for the isolation of cells, and can easily be performed within 1 hr. As described in Figure 2, tissues a...
Access restricted. Please log in or start a trial to view this content.
This model was developed to successfully propagate hPSCs, while maintaining their characteristics, in humanized feeder-free culture conditions without the addition of exogenous recombinant growth factors such as bFGF or insulin, enabling the manipulation of hPSCs in a humanized microenvironment. Exogenous bFGF supplementation is common and the application of substrata such as Matrigel or laminin is essential for feeder-free culturing of hPSCs14.
This protocol is simple and easy to i...
Access restricted. Please log in or start a trial to view this content.
The authors indicate no conflicts of interest.
The authors would like to thank Soon-Cheol Hong (M.D., Ph.D., Associate Professor, Department of Obstetrics and Gynecology, Medical College Korea University) for providing placental tissue. This work was supported in part by grants (R1211902) from the National Research Foundation of Korea (NRF), Republic of Korea.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Mitomycin-C | Sigma-Aldrich Corporation | M4287 | 10 μg/ml |
Mycoplasma detection kit | TaKaRa Bio Inc. | #6601 | |
Matrigel | BD Biosciences | #354277 | |
mTeSR1 | STEMCELL Technologies Inc. | #05850 | |
Dispase | Worthington Biochemical Corporation | LS02100 | 1 mg/ml |
Gelatin | Sigma-Aldrich Corporation | G2500 | 0.10% |
BM-Cyclin | Roche | 799 050 | 10 μg/ml |
RNeasy mini kit | Qiagen | 74104 | |
Nano Drop Spectrophotometer | Thermo Fisher Scientific Inc | ||
iQ SYBR Green qPCR Master Mix | Bio-Rad Laboratories | #170-8882AP | |
ES Cell Characterization kit | Chemicon International, Inc., | SCR001 | |
Power cDNA Synthesis Kit | iNtRON Biotechnology | 25011 | |
QIAamp® DNA Micro kit | Qiagen | 56304 | |
AmpF/STR® Identifiler® PCR Amplification kit | Applied Biosystems Inc. | 4322288 | |
Applied Biosystems® 3130xl Genetic Analyzer | Applied Biosystems Inc. |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone