Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We described here a simple loop-mediated isothermal amplification (LAMP) method using lyophilized reagents for the detection of C. burnetii in patient samples.
Coxiella burnetii, the agent causing Q fever, is an obligate intracellular bacterium. PCR based diagnostic assays have been developed for detecting C. burnetii DNA in cell cultures and clinical samples. PCR requires specialized equipment and extensive end user training, and therefore, it is not suitable for routine work especially in a resource-constrained area. We have developed a loop-mediated isothermal amplification (LAMP) assay to detect the presence of C. burnetii in patient samples. This method is performed at a single temperature around 60 °C in a water bath or heating block. The sensitivity of this LAMP assay is very similar to PCR with a detection limit of about 25 copies per reaction. This report describes the preparation of the reaction using lyophilized reagents and visualization of results using hydroxynaphthol blue (HNB) or a UV lamp with fluorescent intercalating dye in the reaction. The LAMP reagents were lyophilized and stored at room temperature (RT) for one month without loss of detection sensitivity. This LAMP assay is particularly robust because the reaction mixture preparation does not involve complex steps. This method is ideal for use in resource-limited settings where Q fever is endemic.
The small Gram-negative bacterium Coxiella burnetii is the causative agent of Q fever, which is a worldwide zoonosis. Due to Q fever's worldwide distribution and the high infectivity of C. burnetii, US military and civilian personnel deployed overseas are at risk of being infected in the endemic areas.
Q fever manifests in two forms: acute and chronic infections. Acute Q-fever presents itself with flu-like symptoms, hepatitis, or pneumonia, and is usually a self-limiting disease with a low mortality rate. Chronic Q-fever, while less prevalent, often results in endocarditis, which has a much higher mortality rate if left untreated1,2. Therefore, early diagnosis to guide an appropriate treatment is critical for patient care. Polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) assays have been developed for detecting C. burnetii DNA in cell cultures and clinical samples3-5. Both PCR and qPCR are costly and often not readily available in resource-constrained areas for routine work.
Originally described by Notomi6, loop-mediated isothermal amplification (LAMP) offers an alternative DNA amplification method. LAMP uses Bst DNA polymerase for strand displacement DNA synthesis along with specially designed primer sets that recognize at least six independent regions of the target gene. The most significant advantage of LAMP is that amplification occurs under isothermal conditions. Therefore, only a water bath, heating block or an incubator is required. This method has been used to detect several rickettsial pathogens7-9. Visualization of amplified DNA products by gel electrophoresis is the most accurate method which can differentiate true positives from false positives due to nonspecific amplification. However the procedures involved in gel electrophoresis are not practical for resource-limited areas. Several alternative methods were developed to detect the reaction products. These alternative, such as turbidity derived from magnesium pyrophosphate formation10 or using a fluorescent intercalating dye to be visualized under UV light11,12 are more favorable than running a gel. The LAMP reagents were stable for one month when stored at 25 °C and 37 °C, which are ambient temperatures in tropical and sub-tropical countries where Q fever is endemic13.
A LAMP assay was developed in our laboratory to detect the presence of C. burnetii in plasma samples14. Here we describe a simple protocol for the preparation of the LAMP reaction mixture from the lyophilized reagents. The lyophilized reagents are stable for one month when stored at RT. When combined with an easy visualization method, this is an ideal method to use for detecting C. burnetii in a resource-limited setting.
1. Prepare Plasmid DNA Dilutions as Standard for LAMP Reaction
2. Prepare DNA Template from Samples for LAMP Reaction
3. Prepare 2x LAMP Reaction Buffer
4. Perform Standard LAMP Reaction
5. Perform LAMP Reaction with Reconstituted Reagents
6. Perform LAMP Reaction with Reconstitution Buffer Containing HNB or Fluorescent Intercalating Dye
7. Perform Real-time LAMP Reaction with Tube Scanner
The lyophilized LAMP reagents inside the 0.2 ml tube contains Bst DNA polymerase, primers, and dNTPs. 20 µl of reconstitution buffer is used to re-suspend the lyophilized reagents. Figure 1 shows the LAMP reaction results on agarose gels with freshly prepared reagents and lyophilized reagents. The lyophilized reagent does not reduce its activity. LAMP reactions prepared by both reagents can detect 25 copies of DNA template. Figure 2 shows th...
Previously, we developed a sensitive and specific LAMP assay targeting the insertion element IS1111a14. The IS1111 element was selected because it is highly conserved among the different strains of C. burnetii and its high number of copies (7 to 110) in the bacteria (Klee 2006). Our results showed that LAMP can detect about 25 copies of the IS1111 element, which may correlate to as little as one chromosomal copy of Coxiella DNA. In this study, Bst DNA polym...
The authors have nothing to disclose.
This research was supported by Naval Medical Research Center, research work unit 6000.RAD1.J.A0310. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government. Wei-Mei Ching is an employee of the U.S. Government. This work was prepared as part of her official duties. Title 17 U.S.C. §105 provides that 'Copyright protection under this title is not available for any work of the United States Government.' Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by military service member or employee of the U.S. Government as part of that person's official duties.
Name | Company | Catalog Number | Comments |
LAMP primers | Eurofins MWG operon | 10 nmol, salt free | Sequence designed by customer |
Bst DNA polymerase | New England Biolabs | M0275L | 8 units/ml |
10x Thermo pol buffer | New England Biolabs | B9004S | |
dNTP mixture | New England Biolabs | N0447L | 10 mM each |
Betaine | Sigma-Aldrich | B0300 | 5 M, Trimethylglycine |
Magnesium Sulfate | Sigma-Aldrich | M3409-1ML | 1 M |
10x Bluejuice | Invitrogen | 10816-015 | gel loading buffer |
SYBR green | Invitrogen | S7585 | 10,000x, visualize products in tubes |
GelRed | Phenix Research Products | RGB-4103 | 10,000x, visualize products in gels |
Lyophilized reagents | Gene Reach | ||
Hydroxynaphthol blue | Fluka | 33936-10G | |
ESEQuant tube scanner | Qiagen | real-time detection |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone