Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

In these studies, we provide methodology for novel, neonatal, murine cardiac scaffolds for use in regenerative studies.

Streszczenie

The only definitive therapy for end stage heart failure is orthotopic heart transplantation. Each year, it is estimated that more than 100,000 donor hearts are needed for cardiac transplantation procedures in the United States1-2. Due to the limited numbers of donors, only approximately 2,400 transplants are performed each year in the U.S.2. Numerous approaches, from cell therapy studies to implantation of mechanical assist devices, have been undertaken, either alone or in combination, in an attempt to coax the heart to repair itself or to rest the failing heart3. In spite of these efforts, ventricular assist devices are still largely used for the purpose of bridging to transplantation and the utility of cell therapies, while they hold some curative promise, is still limited to clinical trials. Additionally, direct xenotransplantation has been attempted but success has been limited due to immune rejection. Clearly, another strategy is required to produce additional organs for transplantation and, ideally, these organs would be autologous so as to avoid the complications associated with rejection and lifetime immunosuppression. Decellularization is a process of removing resident cells from tissues to expose the native extracellular matrix (ECM) or scaffold. Perfusion decellularization offers complete preservation of the three dimensional structure of the tissue, while leaving the bulk of the mechanical properties of the tissue intact4. These scaffolds can be utilized for repopulation with healthy cells to generate research models and, possibly, much needed organs for transplantation. We have exposed the scaffolds from neonatal mice (P3), known to retain remarkable cardiac regenerative capabilities,5-8 to detergent mediated decellularization and we repopulated these scaffolds with murine cardiac cells. These studies support the feasibility of engineering a neonatal heart construct. They further allow for the investigation as to whether the ECM of early postnatal hearts may harbor cues that will result in improved recellularization strategies.

Wprowadzenie

Heart failure is common and deadly. It is a progressive disease that results in decreased contractility of the heart, which impairs blood flow to organs and leaves the metabolic demands of the body unmet. It is estimated that 5.7 million Americans have heart failure and it is the primary cause of hospitalization in the United States9. The collective cost of treating patients in heart failure in the United States exceeds $300 billion dollars per year 9-10. The only definitive therapy for end stage heart failure is orthotopic heart transplantation. Each year, it is estimated that more than 100,000 donor hearts are needed for cardiac transplantation procedures in the United States1-2. Due to the limited numbers of donors, only approximately 2,400 transplants are performed each year in the U.S.2. Clearly, this organ shortage needs to be addressed as other strategies are required to produce additional organs for transplantation and, ideally, these organs would be autologous so as to avoid the complications associated with rejection and lifetime immunosuppression.

Mammalian adult cardiomyocytes demonstrate a limited regenerative capacity upon injury but recent evidence suggests that mammalian neonatal hearts maintain a remarkable regenerative capacity following injury5-8. Specifically, following partial surgical resection, a regenerative window has been discovered between birth and postnatal day 7. This regenerative period is characterized by a lack of fibrotic scar, formation of neovascularization, release of angiogenic factors from the epicardium, and cardiomyocyte proliferation 5-8,11. This regenerative window of time provides the potential for using the neonatal heart as a novel source of material for the development of a bioartificial heart.

The extracellular matrix is known to provide important cues to promote cardiomyocyte proliferation and growth. Distinct differences in the availability of molecules in the neonatal and adult matrices12 and their ability to promote regeneration have been explored13. Decellularized adult matrices have been used in several studies to provide an ECM scaffold for cellular repopulation and the generation of a bioartificial heart. While these studies, and new discoveries in stem cell technologies, are advancing rapidly, several hurdles have yet to be met. For example, limitations in preserving native structure of the matrix, cellular integration into the matrix wall, and ability to support proliferation and growth all limit the success of this approach. While superior regenerative attributes have been ascribed to the neonatal heart, the practical aspects of using such a tissue have limited its exploration.

Based on the demonstrated regenerative capacity of the neonatal heart, we have developed novel matrices by developing a technique of decellularization for the P3 mouse heart. The P3 heart was chosen for these studies as it is within the window of cardiac regeneration as previously determined6 but the heart is large enough to harvest, decellularize and recellularize. The goal of this study is to demonstrate the feasibility of creating a matrix from a neonatal mouse heart. Our studies provide evidence for the feasibility of decellularizing a minute, neonatal heart while maintaining the structural and proteinaceous integrity of the ECM. We also demonstrate the ability to recellularize this cardiac ECM with mCherry expressing cardiomyocytes and we have examined these cardiomyocytes for expression of various cardiac markers following recellularization. This technology will allow for the testing of the superiority of a neonatal matrix for the development of a bioartificial heart.

Protokół

All mouse experiments were performed in accordance with US Animal Welfare Act and were approved by the Institutional Animal Care and Use Committee at the University of Minnesota.

1. Method for Mouse Heart Isolation

  1. Euthanize a neonatal mouse by decapitation with a single use blade.
  2. Swab the thorax with 70% ethanol.
  3. Dissect the skin from the chest by cutting it away from the chest wall with standard scissors while pulling the skin laterally with a pair of #5 forceps.
  4. Perforate the abdomen just inferior to the sternum with the scissors by cutting through the abdominal wall. Grasping the xiphoid process with #5 forceps, retract the sternum rostrally from the body while cutting though the ribs on either side of the chest with the scissors. The rib cage is reflected superiorly with the forceps to reveal the heart.
  5. Bluntly dissect the two main lobes of the thymus by pulling laterally with #5 forceps, exposing the arch of the aorta, as well as the caval and pulmonary veins.
  6. Transect the major arteries from the aortic arch, and the aorta itself, with the 10 cm spring scissors. Retain the aorta between the base of the heart and the brachiocephalic artery. Grasp the ends of the severed vessels with the #5 forceps to reflect the heart forward, separating it from the trachea and esophagus.
  7. Transect the pulmonary vasculature and other major veins, by cutting between the lungs and the heart on both sides of the heart with the 10 cm spring scissors. The veins remain open to provide drainage.
  8. Remove the heart from the mediastinum with the #5 forceps, grasping the severed ends of the major vessels. Place the heart in a 60 mm culture dish containing sterile phosphate buffered saline (PBS) for catheterization.

2. Method for Decellularization by Langendorff Perfusion

  1. Prepare the catheter assembly in advance. Draw a 4 cm section of PE 50 tubing in a small alcohol flame to create a smaller, thinner catheter. Trim the ends with a blade to meet the dimensions (Approx. 300 µm outside diameter O.D. with a flange of approx. 500 µm O.D.) shown in Figure 1. This will provide two symmetrical catheters from each side of the pull.
  2. Point the cut end of the tubing into the flame briefly, to melt a flange onto the opening at the thin end.
  3. Fill the 12 ml syringe with PBS and assemble the catheter by placing a 3-way stopcock on the syringe. Add a 22 G x 1 needle to the stopcock and drive the needle through the septum. Slide the drawn PE tubing catheter onto the needle (Fig. 1).
  4. Irrigate the assembled parts with PBS, assuring that all air bubbles have been removed.
  5. Insert the catheter, prepared as outlined above, into the aorta of the isolated heart, not extending past the aortic valve and ligate with one tie of 7-0 suture. Rest the flange of the catheter proximally against the tie, making a tight seal and preventing the heart from coming off the catheter.
  6. Observe the catheterization under magnification, while gently perfusing the heart using the syringe containing PBS. Ensure that there are no leaks in the system and the tissue homogeneously blanches as latent blood is removed.
  7. Place the septum into the neck of the inlet adaptor and seal it by folding the sides over the glass.
  8. Attach the reservoir filled with 60 ml of 1% sodium dodecyl sulfate (SDS) in distilled water (dH2O) via a line of sufficient length to produce a column that generates 20 mm Hg pressure as shown in Fig. 1. Calculate the pressure from the liquid column height based on the relationship of 1 mm Hg is equal to 1.3595 cm H2O.
    Caution: SDS is a highly flocculent powder with irritant properties. Contact should be avoided. Handle the powder using appropriate protective clothing.
  9. Perfuse the heart with 1% SDS for 14 hr. The heart will be translucent in appearance with no observable remaining tissue.
  10. Flush the system up to the stopcock of the remaining SDS solution and replace it with 10 ml dH2O. Perfuse the heart with 10 ml 1% Triton X-100 (diluted in distilled water), followed by 10 ml dH2O, followed by 60 ml PBS containing 1x penicillin streptomycin (Pen-Strep).
  11. Store the heart in PBS with 1x Pen-Strep at 4 °C. If the intended post decellularization application requires perfusion then the catheter in the aorta should be maintained, otherwise cut the suture tie and remove the catheter.

3. DNA Determination

  1. Prepare a digest of the decellularized ECM or control heart using 200 μg/ml proteinase K in 50 mM KCl, 2.5 mM MgCl2, 0.45% Tween 20 in 10 mM Tris (pH 8.3).
  2. Incubate the tissue at 55 °C with agitation until the tissue is dissolved, typically 4-5 hr.
  3. Quantitate the DNA content of the homogenate with a DNA binding assay4,11.

4. Fixation and Sectioning of Tissue

  1. Fix decellularized, recellularized or control P3 hearts in 4% paraformaldehyde in PBS for 30 min at room temperature.
  2. Wash the tissue in PBS 3x.
  3. Place the tissue in a solution of 7.5% sucrose in 0.1 M phosphate buffer at 4 °C until it sinks.
  4. Change the solution to 15% sucrose in 0.1 M phosphate buffer at 4 °C, again, until it sinks.
  5. Warm the tissue to 37 °C, replace half of the volume with gelatin solution in 15% sucrose & 0.1 M phosphate buffer and equilibrate overnight. Concentrations of gelatin are increased stepwise through 1%, 2.5%, 5% and finally 7.5% twice.
  6. Place the samples in cryomolds using fresh 7.5% gelatin. To restore the shape of the decellularized samples, liquid gelatin can be perfused into the chambers as the hearts are molded. Freeze by floating the cryomolds on liquid nitrogen. Store at -80 °C.
  7. Cut (10 µm thick) sections with a cryostat. Bring the slide close to the section surface and observe the section move off from the knife onto the surface due to the charge on the electrostatically treated slides. Dry the slides overnight and store at -80 °C for future analysis.
  8. Remove the slides from the freezer, equilibrate to room temperature and then place in a Coplin jar containing PBS for 20 min at 37 °C to dissolve the gelatin.
  9. Stain the cut sections from Step 4.7 with Hematoxylin and Eosin. Place slides in a Coplin jar. Expose the slides hydrated in Step 4.8 to Hematoxylin for 45 sec, tap water for 1.5 min, buffer for 3 min, tap water for 1 min, bluing agent for 1.5 min, 80% ethanol for 1 min, Alcoholic Eosin Y for 8 sec, 80% ethanol for 1 min, 100% ethanol for 1 min 2x, clearing agent (xylene substitute) for 1 min 3x, coverslip with resin based mounting medium. Examine the slides microscopically.
  10. To confirm the retention of ECM protein reactivity of the heart ECM, stain for ECM structural proteins such as collagen IV by placing the hydrated slides in a humidified chamber and treat with 10% normal donkey serum (NDS) in phosphate buffered saline with 0.1% Triton-X100 (PBST) for 1 hr at room temperature (RT). Use a sufficient volume to cover the tissue sections.
  11. Replace the solution with the primary antibody of choice at an empirically determined dilution in 5% NDS / PBST. For example, the Collagen IV antibody was diluted at 1:150. Incubate overnight at 4 °C.
  12. Wash the slides with PBST 3x and apply a secondary antibody of choice conjugated with a fluorescent dye. Dilute the antibody by an empirically determined amount. Incubate for 1 hr at RT. Wash with PBS 3x.
  13. Stain the slides with a DNA binding dye such as DAPI to verify absence of cell nuclei by using a DAPI containing mounting medium when cover slipping the slides.
  14. Examine the slides with a fluorescent microscope at 50 to 400X.

5. P1 Neonatal Murine Ventricular Cardiomyocytes for Recellularization

  1. Spray each pup with 70% ethanol and decapitate with a single use blade.
  2. Hold each pup between the thumb and forefinger while the thorax is split at the midline with small sterile scissors to expose the thoracic cavity. Apply pressure to allow the heart to protrude freely from the chest while it is cut free of the major vessels and the atria leaving only the ventricular tissue.
  3. Place each heart directly into a 50 ml tube containing 20 ml ice-cold Calcium, Bicarbonate free Hank's buffered saline solution with 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (CBFHH) until all the hearts are collected.
  4. Aspirate the CBFHH and add 10-15 ml of fresh CBFHH (ice-cold) to the tube. Wash the tissue by swirling the tissue in the tube several times.
  5. Decant the solution containing the hearts into a 60 mm plastic Petri dish.
  6. Dissect any latent atrial tissue from the hearts under magnification on ice by trimming it away from the hearts with the spring scissors. Mince up the ventricles into homogenously sized small pieces. Remove any separated non-ventricular tissue from the dish with #5 forceps.
  7. Pipet as much of the CBFHH solution as is needed to transfer the tissue fragments into a small sterile vial that contains a sterile micro stir bar.
  8. Allow the tissue to sediment to the bottom of the vial and remove the CBFHH solution.
  9. Make up 50 ml of an enzyme solution 1.75 mg/ml trypsin, 20 µg/ml DNase II in CBFHH. Pipet 5 ml of this enzyme solution and add it to a tube containing minced ventricular tissue and place on a magnetic stirrer. Stir at a constant rate (340 rpm) at room temperature for 8 min.
    NOTE: The stirring action should be gentle and yet allow for the suspension of the slurry.
  10. Remove the vial from the stir plate and allow the slurry to sediment for 3 min. Pipet and discard the initial digest supernatant, as it primarily contains blood cells and tissue debris.
  11. Pipet a second 5 ml aliquot of the enzyme solution and add it to the digesting ventricle. Stir for 8 min and allow it to sediment for another 3 min. Prior to beginning the digests, prepare two 50 ml tubes (labeled 1 and 2) each containing 12 ml ice-cold fetal bovine serum (FBS). Place a 40 µm cell strainer atop each tube. Pipet this supernatant through the filter on tube 1.
  12. Repeat the digestion process an additional 8 times, alternating the placement of the digest supernatant between the two tubes containing FBS. Split the last supernatant equally between tubes 1 and 2 to ensure equal volumes in each tube.
    NOTE: Each collection tube will now contain 32.5 ml total volume of cell suspension.
  13. Centrifuge the tubes containing the supernatant 150 x g for 6 min at 4 °C.
  14. While collecting the digestion aliquots, prepare five 100 mm tissue culture plates with 6 ml of media (Dulbecco's Modified Eagle's Media (DMEM) with 10% FBS, 1x Pen-Strep, 1x L-glutamine) per plate. Incubate these aliquots at 37 °C, 5% CO2 for 30 min to equilibrate the media.
  15. Aspirate the CBFHH enzyme mixture and resuspend the cells into the 30 ml of culture media prepared above, combining the cells from both collection tubes.
  16. Return 6 ml of cell suspension to each of the 100 mm plates and incubate for 45 min at 37 °C.
  17. At the end of the incubation, transfer the non-adherent cells to 5 new dishes and re-incubate for 45 min (the fibroblast fraction will have begun to adhere to the dishes and can be grown out separately if desired).
  18. At the end of the second round of pre-plating, collect the media and non-adherent cells from the dishes and spin the media at 150 x g for 6 min.
  19. Draw off excess media to bring the cells to the approximate desired concentration, (4.0 x 105 cells per construct in 100 µl of perfusate). Remove an aliquot for counting and or viability testing14.

6. Bioreactor Recellularization of P3 Heart Matrix

  1. Pretreat the isolated heart matrix with culture media (see Step 5.15) overnight before adding the cells.
  2. Assemble the elements of a Langendorff system as shown in Fig. 2. Autoclave the glass parts and ethylene oxide sterilize the plastic parts to assure sterility. Various sub units of the system can be assembled in a laminar flow hood before being mounted on the support stand. Circulating water bath and heated water flow path has been omitted for clarity.
  3. Fill the assembled system with 120 ml of tissue culture media (see Step 5.15).
  4. Place the catheterized heart matrix from Step 2.14 in a 60 mm culture dish under magnification and connect a 1 ml syringe with 22 G x 1 needle loaded with cell suspension from Step 5.20 to the catheter. Ensure that this assembly is free of air bubbles to avoid embolizing the heart.
  5. Gently perfuse the 100 µl of cell suspension into the heart matrix via the coronary arteries. Once complete, detach the syringe/needle combination.
    NOTE: A slow perfusion of approx. 20 µl per min is required to prevent the cells from flowing out of the veins, transiting the heart.
  6. With a 22g blunt stub secured to the Luer fitting on the underside of the bioreactor heart jar lid, push the catheter onto the stub.
  7. Start the peristaltic pump and observe that the flow proceeds as outlined in Figure 2. Flow proceeds from the reservoir via the pump through the bubble trap to the catheter placed in the aorta in Step 2.5 (red path in Fig. 2). Observe the flow of the cardiac circulation out of the veins and drip from the apex, recirculating to the media reservoir.
    NOTE: The perfusion flow rate is dependent on individual factors such as the vascular resistance of the construct, and the size of the heart, but a rate of 50 to 100 µl/min is a good starting point. At intermediate time points, functional assessments can be executed. The size scale of the neonatal recellularized heart limits the assessments, that can be performed but we have determined that optically based systems can be used to quantify beating behavior just as they have been used in adult rat hearts.4 The construct can be perfused for extended periods of time (up to 23 hr).

Wyniki

Decellularization
On average, the time to decellularization of a P3 heart using this protocol is approximately 14 hr. given an average heart weight of 23 mg for the P3 neonate.

Acellularity
Figure 3a
demonstrates a fully intact P3 neonatal heart (whole mount). Figure 3b shows the same heart following decellularization. Figures 4a and 4b show the hema...

Dyskusje

The dependence of this technique on repeated perfusions of the heart makes the avoidance of an embolism a critical component of a successful outcome. From the initial catheterization of the heart in Steps 2.2-2.6, to the changes of solution between Steps 2.8-2.14, there are manipulations that can allow introduction of air bubbles which compromise the flow of perfusate into the myocardium. Due to the diminutive size of the neonatal heart, even minute bubbles in the vasculature can cause a technical infarct, thus rendering...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors gratefully acknowledge Ms. Cynthia DeKay for the preparation of the figures.

Materiały

NameCompanyCatalog NumberComments
1. Materials For Mouse Heart Isolation
P1 mouse pups (as shown; B6;D2-Tg(Myh6*-mCherry)2Mik/J)Jackson Laboratories21577or equivalent
60 mm Culture dishBD Falcon353004or equivalent
Phosphate buffered saline pH 7.4 (sterile)HycloneSH30256.01or equivalent
Single Use BladeStanley28-510or equivalent
Standard ScissorsMoria Bonn (Fine Science Tools)14381-43or equivalent
Spring Scissors 10 cmFine Science Tools15024-10or equivalent
Vannas Spring Scissors - 3mm Cutting EdgeFine Science Tools15000-00or equivalent
#5 ForcepsDumnot (Fine Science Tools)11295-00or equivalent
2. Materials For Decellularization
Inlet adaptorChemglassCG-1013autoclavable
SeptumChemglassCG-3022-99autoclavable
1/8 in. ID x 3/8 OD C-Flex tubingCole-Parmer EW-06422-10autoclavable
Male luer to 1/8" hose barb adaptorMcMaster-Carr51525K33autoclavable
Female luer to 1/8" hose barb adaptorMcMaster-Carr51525K26autoclavable
Prolene 7-0 surgical suture Ethicon8648Gor equivalent
Ring standFisher ScientificS47807or equivalent
ClampFisher Scientific05-769-6Qor equivalent
Clamp regular holderFisher Scientific05-754Qor equivalent
60 cc syringe barrel Coviden1186000777Tor equivalent
BeakerKimble14000250or equivalent
22g x 1 Syringe Needle BD305155or equivalent
12 cc syringe Coviden8881512878or equivalent
3-way stop cock  Smith Medical MX5311Lor equivalent
22 x 1 g needle BD305155or equivalent
PE50 tubing BD Clay Adams Intramedic427411Must be formable by heat. Polyethylene recommended
1% SDS Invitrogen15525-017Ultrapure grade recommended. Make up fresh solution and filter sterilize before use. 
1% Triton X-100 Sigma-AldrichT8787Make up fresh solution from a 10% stock and filter sterilize before use. 
Sterile dH2OHycloneSH30538.02Or MilliQ system purified water.
1X Pen/Strep Corning CellGro30-001-Clor equivalent
3. Materials For DNA Quantitation
Proteinase K FisherBP1700>30U/mg activity
KClSigma-AldrichP9333or equivalent
MgCl*6H2OMallinckrodt5958-04or equivalent
Tween 20 Sigma-AldrichP1379or equivalent
Tris base/hydrochlorideSigma-AldrichT1503/T5941or equivalent
Pico-Green dsDNA assay kitLife Technologies P7589requires fluorimeter to read
4. Method for fixation and sectioning of tissue. 
ParaformaldehydeSigma-AldrichP6148or equivalent
Gelatin Type A from porcine skinSigma-AldrichG2500must be 300 bloom or greater
5. Method for tissue histology
Cryomolds 10 x 10 x 5mmTissue-Tek4565or equivalent
CryostatHacker/BrightModel OTFor equivalent
Microscope Slides  25 x 75 x 1 mmFisher Scientific12-550-19or equivalent
Hematoxylin 560 Surgipath/Leica Selectech 3801570or equivalent
EthanolDecon Laboratories2701or equivalent
DefineSurgipath/Leica Selectech 3803590or equivalent
Blue buffer Surgipath/Leica Selectech 3802915or equivalent
Alcoholic Eosin Y 515 Surgipath/Leica Selectech 3801615or equivalent
Formula 83 Xylene substitute CBG Biotech CH0104Bor equivalent
Permount Mounting Medium Fisher Chemical SP15-500or equivalent
Collagen IV AntibodyRockland600-401-106.1or equivalent
α-Actinin AntibodyAbcamAB9465or equivalent
mCherry AntibodyAbcamAB205402or equivalent
NKX2.5 AntibodySanta Cruz BiotechnologySC-8697or equivalent
Donkey anti-mouse AF488 AntibodyLife Technology A21202 or equivalent
Donkey anti-chicken AF594 AntibodyJackson Immunoresearch 703-585-155 or equivalent
Donkey anti-goat CY5 AntibodyJackson Immunoresearch 705-175-147or equivalent
Fab Fragment Goat Anti-Rabbit IgG (H+L) AF594Jackson Immunoresearch 111-587-003 or equivalent
Prolong Gold Antifade Mountant with DAPIThermoFisherP36930or equivalent
6. Isolation of neonatal ventricular cardiomyocytes using pre-plating.
HBSS (Ca, Mg Free)HycloneSH30031.02or equivalent
HEPES (1M)Corning CellGro25-060-Clor equivalent
Cell StrainerBD Falcon352340or equivalent
50 mL tubeBD Falcon352070or equivalent
Primeria 100 mm platesCorning353803Primeria surface enhances fibroblast attachment promoting a higher myocyte purity
TrypsinDifco215240or equivalent
DNase IISigma-AldrichD8764or equivalent
DMEM (Delbecco's Minimal Essential Media)HycloneSH30022.01or equivalent
Vitamin B12 Sigma-AldrichV6629or equivalent
Fibronectin coated plates BD Bioscience354501or equivalent
Fetal bovine serum HycloneSH30910.03or equivalent
Heart bioreactor glasswareRadnoti Glass Technology120101BEZMust be sterilizable by autoclaving or gas.

Odniesienia

  1. Yusen, R. D., et al. Registry of the International Society for Heart and Lung Transplantation: Thirty-second official adult lung and heart-lung transplantation report--2015. J Heart Lung Transplant. 34 (10), 1264-1277 (2015).
  2. Go, A. S., et al. Heart disease and stroke statistics--2014 update: A report from the american heart association. Circulation. 129 (3), e28-e292 (2014).
  3. Kapelios, C. J., Nanas, J. N., Malliaras, K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 12 (1), 87-100 (2016).
  4. Ott, H. C., et al. Perfusion decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nat Med. 14 (2), 213-221 (2008).
  5. Porrello, E. R., Olson, E. O. A neonatal blueprint for cardiac regeneration. Stem Cell Research. 13 (3 Pt B), 556-570 (2014).
  6. Porrello, E. R., et al. Transient regenerative potential of the neonatal mouse heart. Science. 331 (6020), 1078-1080 (2011).
  7. Polizzotti, B. D., et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 7 (281), 281ra45 (2015).
  8. Jesty, S. A., et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 109 (33), 13380-13385 (2012).
  9. Ambrosy, A. P., et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned From Hospitalized Heart Failure Registries. J Am Coll Cardiol. 63 (12), 1123-1133 (2014).
  10. Roger, V. L., et al. Executive Summary: Heart Disease and Stroke Statistics-2012 Update A Report From the American Heart Association. Circulation. 125 (22), 188-197 (2012).
  11. Kennedy-Lydon, T., Rosenthal, N. Cardiac regeneration: epicardial mediated repair. Proc R Soc B. 282 (1821), 2147-2172 (2015).
  12. Williams, C., Sullivan, K., Black, L. D. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthcare Mat. 4 (10), 1545-1554 (2015).
  13. Borg, T. K., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 104 (1), 86-96 (1984).
  14. Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immnol. 111, A3-B1-3 (2015).
  15. Gilbert, T. W., Freund, J. M., Badylak, S. F. Quantification of DNA in biologic scaffold materials. J Surg Res. 152 (1), 135-139 (2009).
  16. Akhyari, P., et al. The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods. 17 (9), 915-926 (2011).
  17. Lu, T. Y., et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 4 (2307), 1-11 (2013).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Neonatal Cardiac ScaffoldsRegenerative StudiesExtracellular MatrixCell matrix InteractionsNeonatal Extracellular MatrixDecellularizationCardiac Tissue EngineeringTissue HarvestingMediastinal DissectionPBS PerfusionCardiac Vasculature

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone