Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Microglial phagocytosis is critical for the maintenance of tissue homeostasis and inadequate phagocytic function has been implicated in pathology. However, assessing microglia function in vivo is technically challenging. We have developed a simple but robust technique for precisely monitoring and quantifying the phagocytic potential of microglia in a physiological setting.
Microglia are the tissue resident macrophages of the central nervous system (CNS) and they perform a variety of functions that support CNS homeostasis, including phagocytosis of damaged synapses or cells, debris, and/or invading pathogens. Impaired phagocytic function has been implicated in the pathogenesis of diseases such as Alzheimer's and age-related macular degeneration, where amyloid-β plaque and drusen accumulate, respectively. Despite its importance, microglial phagocytosis has been challenging to assess in vivo. Here, we describe a simple, yet robust, technique for precisely monitoring and quantifying the in vivo phagocytic potential of retinal microglia. Previous methods have relied on immunohistochemical staining and imaging techniques. Our method uses flow cytometry to measure microglial uptake of fluorescently labeled particles after intravitreal delivery to the eye in live rodents. This method replaces conventional practices that involve laborious tissue sectioning, immunostaining, and imaging, allowing for more precise quantification of microglia phagocytic function in just under six hours. This procedure can also be adapted to test how various compounds alter microglial phagocytosis in physiological settings. While this technique was developed in the eye, its use is not limited to vision research.
The overall goal of this method is to accurately assess and quantify in vivo microglial phagocytosis. Microglia are the tissue resident macrophages of the central nervous system (CNS). They perform a variety of functions to ensure maintenance of tissue homeostasis. These include immune surveillance, secretion of neurotrophic factors and, of pivotal importance, phagocytosis1. Microglial phagocytosis is key in several important events during development of the brain and retina, such as phagocytosis of irrelevant synapses (synaptic pruning) and removal of apoptotic neurons2-4. Furthermore, microglial phagocytosis of damaged or apoptotic neurons, cellular debris, and invading microbes has been shown to be essential for maintaining CNS homeostasis through adulthood5. Finally, microglial phagocytosis has been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease and age-related macular degeneration, where it has been suggested that defective or insufficient phagocytic capacity may contribute to the build-up of amyloid-β (Aβ) plaques and drusen, respectively6,7.
Microglial function is tightly regulated by their microenvironment, notably by soluble factors such as tumor-growth factor β or cell-cell interactions. Neurons constitutively express several cell surface ligands, such as CD200 and CX3CL1, while microglia exclusively express the respective receptors CD200R and CX3CR1. These receptors contain immunoreceptor tyrosine-based inhibition motifs (ITIMs) in their intracellular portion. These inhibitor receptors are critical for preventing the over-stimulation of microglia, which can contribute to neuroinflammation. Thus, under normal physiological conditions, cell-cell interactions between neurons and microglia keep microglia in a quiescent state. During tissue injury, however, neurons can down-regulate expression of these ligands, removing their inhibitory effect on microglia activation. Microglial function (including phagocytosis) is thus tightly linked to their microenvironment8. Nevertheless, to date, there are no standardized assays to study microglia phagocytosis in a physiological context or in a way that fully replicates their CNS microenvironment.
Several assays have been developed to measure phagocytic activity of microglia in vitro, where primary microglia or microglia cell lines are cultured with target cells (e.g., apoptotic neurons) or fluorescently labeled beads. Target uptake is then assessed using fluorescent imaging microscopy or flow cytometry9-12. These assays allow testing of how pharmacological or genetic manipulation may affect microglial phagocytosis and, while informative, fail to fully replicate the complex in vivo environment. Indirect methods for examining microglial phagocytosis in vivo have been reported: these are accomplished by staining of molecules thought to be involved in phagocytosis (e.g., CD68), assessing physical proximity of microglia and targets for phagocytosis (e.g., compromised neurons or synaptic elements), or by immunohistochemical detection of phagocytic targets within microglial cells (e.g., Aβ)13-17. Two studies have used more direct approaches to assess microglia phagocytosis in vivo. Hughes and colleagues have used imaging techniques to measure microglial uptake of beads delivered via the intracranial route18. Sierra et al. developed a refined method to quantitatively assess microglia phagocytosis of apoptotic cells using complex imaging techniques4. However, these methods involve complicated protocols for tissue preparation, sectioning, imaging, and analysis. We have previously used flow cytometric analysis to assess phagocytosis of photoreceptor outer segments by retinal pigmented epithelium (RPE) cells in culture19. Here, we describe a protocol to rapidly assess uptake of fluorescently labeled particles by retinal microglia as a quantitative measure of in vivo microglia phagocytosis.
The protocol we describe here allows for reliable and quantitative measurement of retinal microglial phagocytosis in just under six hours in three critical steps: (1) intravitreal delivery of fluorescently labeled particles, (2) harvest and preparation of retinal tissue, and (3) flow cytometric analysis. The method we have developed is a robust method to assess microglial phagocytosis in the retina, and it can be successfully used to test how various compounds or genetic manipulation alter this key microglial function in physiological settings. As a specialized area of the CNS, the retina is an easily accessible model system to study microglia function20. While this method was developed in the eye, we believe it can be useful for all neuroscientists investigating microglia phagocytic function.
All animals were treated in accordance with the ethical guidelines established by the Scripps Research Institute.
1. Preparation of Materials for Injection
2. Intravitreal Injection of Bead Solution
NOTE: Two people are required to perform the injection, in a way such that the person performing the injection can hold the mouse and maintain the focus on the eyeball, while the other person passes the loaded syringe and pushes the plunger.
3. Harvesting of Retinal Tissue
NOTE: Retinal tissue from eyes not injected with fluorescently labeled particles should be collected as a control for flow cytometric analysis. Though the assay can be performed using a single retina, for best performance, two retinas should be pooled together.
4. Preparing a Single Cell Suspension
5. Staining Single Cell Suspensions for Flow Cytometric Analysis
6. Flow Cytometric Analysis
Here we describe a method to rapidly and reliably quantify the number of phagocytic retinal microglia in a physiological setting using flow cytometric analysis (Figure 2). This method can be adapted to test the effect of compounds and/or genetic manipulation on the phagocytic capacity of microglia (Figures 3A, 3B). It can also be used in young (10 - 20 days postnatal) or adult mice (Figure 3C). Varying doses of lipopolysaccharide...
There are three critical steps in this method: (1) intravitreal injection of fluorescently labeled particles; (2) harvesting and preparation of retinal tissue; and (3) flow cytometric analysis. We recommend that researchers practice intravitreal injections prior to performing the method we present here. Albino mice (e.g., BALB/c) and a colored solution (e.g., fluorescently labeled particles) can be used for easy visualization of the needle and injected solution. Intravitreal injections are challenging a...
The authors have nothing to disclose.
Salome Murinello is supported by American Diabetes Association grant #1-16-PDF-072. This work was supported by grants to Martin Friedlander from the National Institutes of Health (National Eye Institute EY11254 and EY22025) and the Lowy Medical Research Institute.
Name | Company | Catalog Number | Comments |
Stereomicroscope | Nikon | Discontinued | |
Hamilton syringe, 600 series | Sigma | 26702 | |
33 gauge, Small Hub RN NDL, 0.5 in, point style 4 - 12o | Hamilton | 7803-05 | |
Zymosan A (S. cerevisiae) BioParticles, Alexa Fluor 488 conjugate | ThermoFisher Scientific | Z-23373 | Prepare immediately before injection |
DPBS | Corning | 21-030-CV | |
Dumont #5/45 Forceps | Fine Science Tools | 11251-35 | Need two |
Dumont #5SF Forceps | Fine Science Tools | 11252-00 | |
Vannas Spring Scissors - 3mm Cutting Edge | Fine Science Tools | 15000-10 | Curved |
Neural Tissue Dissociation Kit – Postnatal Neurons | Miltenyi Biotec | 130-094-802 | |
5 mL Polystyrene Round-bottom Tube | Falcon | 352054 | |
96 well U-bottom plate | Falcon | 353077 | |
Stain Buffer (BSA) | BD Biosciences | 554657 | |
CD11b-BV650 Antibody | BioLegend | 101259 | |
Ly6C-APC-Cy7 | BioLegend | 128025 | |
Ly6G-PE-Cy7 | BioLegend | 127617 | |
Propidium Iodide | BD Biosciences | 556463 | |
Purified anti-mouse CD16/32 Antibody | BioLegend | 101301 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone