Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Lung-resident immune cells, including dendritic cells (DCs) in humans, are critical for defense against inhaled pathogens and allergens. However, due to the scarcity of human lung tissue, studies are limited. This work presents protocols to process human mucosal endobronchial biopsies for studying lung DCs using immunohistochemistry and flow cytometry.
The lungs are constantly exposed to the external environment, which in addition to harmless particles, also contains pathogens, allergens, and toxins. In order to maintain tolerance or to induce an immune response, the immune system must appropriately handle inhaled antigens. Lung dendritic cells (DCs) are essential in maintaining a delicate balance to initiate immunity when required without causing collateral damage to the lungs due to an exaggerated inflammatory response. While there is a detailed understanding of the phenotype and function of immune cells such as DCs in human blood, the knowledge of these cells in less accessible tissues, such as the lungs, is much more limited, since studies of human lung tissue samples, especially from healthy individuals, are scarce. This work presents a strategy to generate detailed spatial and phenotypic characterization of lung tissue resident DCs in healthy humans that undergo a bronchoscopy for the sampling of endobronchial biopsies. Several small biopsies can be collected from each individual and can be subsequently embedded for ultrafine sectioning or enzymatically digested for advanced flow cytometric analysis. The outlined protocols have been optimized to yield maximum information from small tissue samples that, under steady-state conditions, contain only a low frequency of DCs. While the present work focuses on DCs, the methods described can directly be expanded to include other (immune) cells of interest found in mucosal lung tissue. Furthermore, the protocols are also directly applicable to samples obtained from patients suffering from pulmonary diseases where bronchoscopy is part of establishing the diagnosis, such as chronic obstructive pulmonary disease (COPD), sarcoidosis, or lung cancer.
The lungs are in continuous contact with the external environment and are highly exposed to both harmless particles and microbes with the capacity to cause disease. Therefore, it is critical for the immune system to mount potent immune responses against invading pathogens, but it is equally important to maintain tolerance to inhaled antigens that do not cause disease. To provide potent immune surveillance, the respiratory system is lined with a network of immune cells, including dendritic cells (DCs). DCs are professional antigen-presenting cells with the unique capacity to activate naive T cells. In human lungs, resident DCs encounter an antigen and then process and transport it to the lung-draining lymph nodes for presentation to and activation of T cells1,2,3.
In the human immune system, DCs can be divided into several subsets, with distinct but overlapping functions: CD1c+ and CD141+ myeloid DCs (MDCs) and CD123+ plasmacytoid DCs (PDCs)4,5. While most detailed knowledge on human DCs stems from studies in blood, it is now evident that the human lungs also harbor rare populations of DC subsets with T-cell stimulatory capacity6,7,8,9. However, accumulating data show that immune cells, including DCs, differ in their frequency, phenotype, and function depending on their anatomical location10. Thus, it is important to study immune cells from the relevant tissue to understand their contribution to local immunity and tolerance. Taken together, this underlines the need to study lung-resident DCs when addressing lung diseases, despite blood DCs being more readily available and accessible in humans.
The first studies that investigated lung-resident DCs in humans primarily relied on morphology and the expression of single markers, such as HLA-DR and CD11c, in tissue sections using immunohistochemistry11,12,13. In contrast, more recent studies have typically relied on flow cytometric analyses to study different immune cell subsets. However, since it is difficult to find a single cell-surface marker that uniquely identifies a specific DC subset, the potential limitation of studies applying only four-color flow cytometry is the risk of including cell populations with similar phenotypic markers as DCs. For example, CD11c is expressed on all myeloid DCs and the vast majority of monocytes. On the other hand, in studies applying more advanced flow cytometry panels, non-cancerous lung tissue from surgical resections of patients were typically used10,14,15,16, although it is unclear whether these rare populations are truly representative of DCs present in healthy subjects. Overall, studies are limited largely due to the fact that surgically removed or whole human lung tissue is scarce.
To overcome some of these limitations, this work describes how to perform a detailed analysis of spatial distribution and a phenotypic identification of DCs in mucosal endobronchial biopsies obtained from healthy volunteers who undergo a bronchoscopy. Several small biopsies can be collected from each individual and can subsequently be embedded for sectioning and analysis using immunohistochemistry or enzymatically digested for advanced flow cytometric analysis. Using lung tissue in the form of endobronchial biopsies obtained from bronchoscopies confers the advantage of making it possible to perform the study on healthy volunteers, unlike open surgery of the lungs that, for obvious reasons, is limited to patients that require thoracic surgery. Furthermore, the tissue that is sampled during a bronchoscopy from healthy volunteers is physiologically normal, in contrast to a non-affected area of lung tissue in patients with a pulmonary disease. On the other hand, the biopsies are small and the number of cells retrieved, even when pooling several biopsies, limits the type of analyses that can be performed.
While the present work focuses on DCs, the methods described can be directly expanded to include other (immune) cells of interest that reside in human mucosal lung tissue. Furthermore, the protocols are also directly applicable to samples obtained from patients suffering from pulmonary diseases where bronchoscopy is part of establishing the diagnosis, such as chronic obstructive pulmonary disease (COPD), sarcoidosis, or lung cancer.
NOTE: This research was approved by the regional Ethical Review Board in Umeå, Sweden.
1. Bronchoscopy for Sampling Endobronchial Biopsies from Human Subjects
2. Embedding the Biopsies in Glycol Methylacrylate (GMA) Resin
NOTE: The GMA immunostaining protocol was originally developed at Southampton University, Histochemistry Research Unit17.
3. Sectioning of GMA-embedded Endobronchial Biopsies
4. Immunohistochemical Staining of GMA-embedded Endobronchial Biopsies
NOTE: Sodium azide is toxic. Prepare the 0.1% sodium azide solution within a fume hood and away from acids. Contact with acids liberates toxic gas.
5. Staining Analysis
6. Enzymatic Digestion of Endobronchial Biopsies
7. Flow Cytometric Analysis of Single Cells of Endobronchial Biopsies after Enzymatic Digestion
Studies characterizing human respiratory tissue-resident immune cells, including DCs, are limited, largely due to the fact that surgically removed or whole human lung tissue is scarce. Here, a less invasive method of obtaining lung tissue from endobronchial biopsies (EBB) of healthy volunteers and developed protocols to study the immune cells in the tissue using immunohistochemistry or flow cytometry are outlined.
Healthy volunt...
This paper describes how to generate a detailed spatial and phenotypical characterization of lung tissue-resident DCs in healthy humans using immunohistochemistry and flow cytometry on endobronchial mucosal biopsies collected during bronchoscopy. In the following paragraphs critical steps in the protocol are discussed in detail.
Critical Steps with the Protocol
Sectioning and immunohistochemistry: It is critical to keep the biopsy blocks at -20 °C when not using t...
The authors declare that they have no competing financial interests.
The authors would like to thank the volunteers who have contributed clinical material to this study. We are also thankful to the staff at the Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, University Hospital, Umeå (Norrlands universitetssjukhus) for the collection of all clinical material.
This work was supported by grants to AS-S from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Karolinska Institutet.
Name | Company | Catalog Number | Comments |
Bronchoscopy | |||
Bronchoscope BF1T160 | Olympus | BF1T160 | |
Light source | Olympus | Exera CV-160 | |
Fenestrated forceps | Olympus | FB21C | Used to take biopsies |
Bite Block | Conmed | 1429 | 20 mm x 27 mm |
Glucose 25% | 500 ml intravenous | ||
Glycopyrronium bromide 0.2 mg/ml | Intravenous. Prevents mucus/saliva secretion | ||
Mixt. Midazolam 1 mg/ml p.o | Can be used for extra relaxation | ||
Lidocaine, 40 mg/ml | Mouth and throat administration / Gargled | ||
Lidocaine 100 mg/ml spray | Administered to back of throat | ||
Lidocaine 20 mg/ml spray | Administered via bronchoscope to airways | ||
GMA processing and embedding | |||
Glass vials | 5 ml | ||
Acetone | Sigma-Aldrich | 32201-1L | |
Molecular sieves, 4 Å | Alfa Aesar | 88120 | 3-4 mm diameter pellets |
Phenylmethylsulfonyl fluoride | Sigma-Aldrich | P-7626 | 0.035 g/100 ml acetone |
Iodoacetamide | Sigma-Aldrich | I-6125 | 0.37 g/100 ml acetone |
Polythene-flat TAAB embedding capsules | TAAB laboratories | C094 | 500x 8 mm diameter, polythene, flat-bottom capsules |
Capsule holder | TAAB laboratories | C054 | Holds 25 8 mm capsules |
JB-4 GMA embedding kit | Polysciences | 00226 | Contains JB-4 Solution A (0026A-800), JB-4 solution B (0026B-3.8), benzoyl peroxide (02618-12) |
Methyl benzoate | Sigma-Aldrich | 27614-1L | |
Silica gel with humidity indicator | Scharlau | GE0043 | 2.5-6 mm |
GMA sectioning | |||
Glass microscope slides | ThermoFisher Scientific | 10143562CEF | Cut edges, frosted end |
Poly-L-Lysine solution | Sigma-Aldrich | P8920-500mL | 1:10 for working solution |
Sheet glass strips for ultramicrotomy | Alkar | ||
Tween 20 | Sigma-Aldrich | P2287 | Wash solution (0.1% Tween20) |
LKB 7800B Knifemaker | LKB | ||
Capsule splitter | TAAB laboratories | C065 | |
Carbon steel single edge blades | TAAB laboratories | B054 | |
Vice | |||
Ammonia, 25% | VWR | 1133.1000 | 2 ml in 1 L, 1:500 (0.05%) |
Microtome | Leica | Leica RM 2165 | |
Light source | Leica | Leica CLS 150 XE | |
Microscope with swing arm stand | Leica | Leica MZ6 | |
GMA Immunohistochemistry | |||
Diamond tipped pen | Histolab | 5218 | |
Hydrogen peroxide 30% solution | AnalaR Normapur | 23619.264 | |
Sodium azide | Sigma-Aldrich | S8032 | |
Tris | Roche | 10708976001 | |
Sodium chloride | VWR chemicals | 27810.295 | |
Bovine serum albumin | Millipore | 82-045-2 | Probumin BSA diagnostic grade |
Dulbecco's modified eagle medium (DMEM) | Sigma-Aldrich | D5546 | |
Anti-human CD45 antibody | BioLegend | 304002 | Mouse monoclonal, clone HI30, isotype IgG1k. Working concentration of 500 ng/ml |
Anti-human CD1a antibody | AbD Serotech | MCA80GA | Mouse monoclonal, clone NA1/34-HLK, isotype IgG2a. Working concentration of 10 µg/ml |
Mouse monoclonal IgG1 isotype control | Abcam | ab27479 | |
Mouse monoclonal IgG2a isotype control | Dako | X094301-2 | |
Vectastain ABC Elite standard kit | Vector Labs | PK-6100 | |
AEC (3-amino-9-ethylcarbazole) peroxidase substrate kite | Vector Labs | SK-4200 | |
Mayers haematoxylin | HistoLab | 01820 | |
Permanent Aqueous Mounting Medium | AbD Serotech | BUF058C | |
Drying oven | |||
DPX permanent mounting solution | VWR | 360292F | |
Light microscope | Leica | Leica DMLB | |
Microscope camera | Leica | Leica DFC 320 | |
Analysis software | Leica | Leica Qwin V3 | |
Enzymatic digestion | |||
Hank's Balanced Salt Solution (HBSS) | Sigma-Aldrich | 55021C | |
Dithiothreitol (DTT) | Sigma-Aldrich | DTT-RO | |
Collagenase II | Sigma-Aldrich | C6885 | |
DNase | Sigma-Aldrich | 10104159001 ROCHE | |
RPMI 1640 | Sigma-Aldrich | R8758 | |
Forceps | |||
Platform rocker | Grant instruments | PMR-30 | |
50 ml conical tubes | Falcon | 14-432-22 | |
40 µm cell strainer | Falcon | 352340 | |
Flow cytometry | |||
Phosphate Buffered Saline (PBS) | |||
LIVE/DEAD Aqua fixable dead cell stain kit | Life Technologies | L34957 | |
CD45 | BD | 555485 | |
CD3 | BD | 557757 | |
CD20 | BD | 335829 | |
CD56 | Biolegend | 318332 | |
CD66abce | Miltenyi | 130-101-132 | |
HLA-DR | BD | 555813 | |
CD14 | BD | 557831 | |
CD16 | Biolegend | 302026 | |
CD11c | BD | 560369 | |
CD1c | Miltenyi | 130-098-009 | |
CD141 | Miltenyi | 130-090-514 | |
CD103 | Biolegend | 350212 | |
Paraformaldehyde | Sigma-Aldrich | F8775 | |
LSR II Flow cytometer | BD | Flow cytometer | |
FlowJo | FlowJo | Software for analysis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone