Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Antibiotic efficacy is most commonly determined by conducting killing kinetic studies and measuring colony forming units (CFUs). By integrating scanning electron microscopy (SEM) with these standard methods, we can distinguish the pharmacological effects of treatment between different antibiotics.
Assessment of antibiotic action with new drug development directed towards anaerobic bacteria is difficult and technically demanding. To gain insight into possible MOA, morphologic changes associated with antibiotic exposure can be visualized using scanning electron microscopy (SEM). Integrating SEM imaging with traditional kill curves may improve our insight into drug action and advance the drug development process. To test this premise, kill curves and SEM studies were conducted using drugs with known but different MOA (vancomycin and metronidazole). C. difficile cells (R20291) were grown with or without the presence of antibiotic for up to 48 h. Throughout the 48 h interval, cells were collected at multiple time points to determine antibiotic efficacy and for imaging on the SEM. Consistent with previous reports, vancomycin and metronidazole had significant bactericidal activity following 24 h of treatment as measured by colony-forming unit (CFU) counting. Using SEM imaging we determined that metronidazole had significant effects on cell length (> 50% reduction in cell length for each antibiotic; P< 0.05) compared to controls and vancomycin. While the phenotypic response to drug treatment has not been documented previously in this manner, they are consistent with the drug's MOA demonstrating the versatility and reliability of the imaging and measurements and the application of this technique for other experimental compounds.
Clostridium difficile is a gram positive, spore-forming bacterium, causing approximately 500,000 infections annually in the US and is considered a threat level urgent pathogen by the Centers for Disease Control and Prevention (CDC), the highest level of risk.1 The past decade has seen considerable drug development in antimicrobials with activity against C. difficile.2,3In vitro studies are a necessary component of the drug development process.4 Traditionally, in vitro susceptibility and time kill studies are used to validate future animal and other in vivo studies.
While these methods serve an important role for evaluating killing action, they do not capture the cells' phenotypic response to pharmacological treatment. By incorporating scanning electron microscopy (SEM) with standard killing kinetic studies, a more thorough characterization of the antibiotic direct effects is possible.5,6,7 Here, we present a method where SEM is used as a means to profile the efficacy of antibiotic treatment.
1. Isolating C. difficile from Different Environmental or Clinical Sources
2. Culturing C. difficile and Killing Kinetic Procedures
3. Preparing Samples for Scanning Electron Microscopy
4. Imaging C. difficile Cells on a Scanning Electron Microscope
5. Image Processing and Analysis
Clostridium difficile is a spore-forming bacterium and thus it is essential to determine the morphology differences between vegetative and spore cells prior to any functional analysis. Figure 1 demonstrates representative images of vegetative cells that were captured during the exponential phase of the growth curve and spore cells. As depicted, vegetative cells are long, smooth, rod-shaped structures whereas spores are small, oval structures that have a rough ext...
The goal of the current study was to create a high-throughput method for isolating C. difficile and testing antibiotic susceptibility using scanning electron microscopy (SEM) as a means for a more thorough characterization of the antibiotic's pharmacological action. Using the protocols outlined here, we have demonstrated that imaging the cell's phenotypic response to antibiotic treatment can reveal insight into the pharmacological action of the drug. In total, the imaging portion of this protocol takes r...
KWG has received past and current research support from Merck & Co. and Summit, PLC.
These experiments have been supported by research grants from Merck and Co. and Summit, PLC.
Name | Company | Catalog Number | Comments |
cotton gauze | Caring | PRM21408C | |
NaCl | Macron | 7532 | |
50 mL tubes | Falcon | 352098 | |
Brain Heart Infusion (BHI) | Criterion | C5141 | |
L-cysteine | Alfa Aesar | A10389 | |
yeast extract | Criterion | C741 | |
sodium taurocholate | Alfa Aesar | A18346 | |
anaerobic chamber | Coy | vinyl anaerobic chamber | |
cycloserinecefoxitin fructose agar (CCFA) plates | Anaerobe systems | AS-213 | |
blood agar plates | Hardy diagnostics | A-10 | |
latex agglutination reagent | Oxoid | DR1107A | C. diff test kit |
microcentrifuge tubes | Eppendorf | 222363204 | |
PBS | Gibco | 10010-031 | |
4% paraformaldehyde | Fisher Scientific | 50-259-98 | |
microscope slides | J. Melvin freed brand | 7525M | 75 x 25mm |
flow hood | Labconco | Class II type A2 | biosafety cabinet |
desk sputtering machine | Denton Vacuum | Desk II | |
tape | Plastic Core | 05072-AB | SPI Double Sided Adhesive Carbon Tape |
gold | Denton Vacuum | TAR001-0158 | 2.375” Diameter x .002” Thick Gold foil |
scanning electron microscope | FEI | XL-30 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone