JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

Antibiotic efficacy is most commonly determined by conducting killing kinetic studies and measuring colony forming units (CFUs). By integrating scanning electron microscopy (SEM) with these standard methods, we can distinguish the pharmacological effects of treatment between different antibiotics.

摘要

用针对厌氧菌的新药开发评估抗生素的作用是困难和技术上的要求。为了获得可能的MOA的了解,可以使用扫描电子显微镜(SEM)显现与抗生素暴露相关的形态学变化。将SEM成像与传统杀伤曲线整合可能会提高我们对药物作用的深入了解,推动药物开发过程。为了测试这个前提,用已知但不同的MOA(万古霉素和甲硝唑)的药物进行杀伤曲线和SEM研究。 艰难梭菌细胞(R20291)在有或没有抗生素存在下长达48小时生长。在48小时的间隔期间,在多个时间点收集细胞以确定抗生素的功效并在SEM上成像。与以前的报道一致,万古霉素和甲硝唑在通过菌落形成单位(CFU)计算的24小时治疗后具有显着的杀菌活性婷。使用SEM成像,我们确定甲硝唑对细胞长度有显着影响(与对照组和万古霉素相比,每种抗生素的细胞长度减少50%, P <0.05)。虽然以前没有以这种方式记录对药物治疗的表型反应,但是它们与药物的MOA一致,证明了成像和测量的通用性和可靠性以及该技术对其他实验化合物的应用。

引言

艰难梭菌是一种革兰氏阳性,形成细菌的细菌,每年在美国造成大约50万感染,被疾病控制和预防中心(CDC)认定为威胁级紧急病原体,这是最高的风险。 1过去十年来,针对艰难梭菌活性的抗微生物药物开展了相当大的药物开发2,3 体外研究是药物开发过程的必要组成部分。 4传统上, 体外易感性和时间杀死研究用于验证未来动物和其他体内研究。

虽然这些方法在评估杀伤作用方面起着重要作用,但它们不能捕获细胞对药理学治疗的表型反应。通过纳入扫描电子显微镜(SEM)与标准d杀死动力学研究,可以更全面地表征抗生素的直接作用。 5,6,7这里,我们提供一种方法,其中SEM用作描述抗生素治疗功效的手段。

研究方案

1.从不同的环境或临床来源分离艰难梭菌

  1. 环境隔离物:使用预先消毒的棉布(轻轻地用0.85%NaCl浸湿),拭拭任何感兴趣区域的表面(地板,门,手柄,搁板 )。 8确保使用无菌手套,并在完成后将拭子放在灭菌管中。
  2. 临床分离物(粪便):使用接种环将头10至100mg临床粪便样品置于头孢西丁 - 环丝氨酸 - 果糖琼脂(CCFA)上,并在严格厌氧条件下孵育48-72小时。将分离出的艰难梭菌菌落的菌落储存在-80℃的低温条件下进一步分析。 7,9,10
  3. 在含有0.05%牛磺胆酸钠的脑心脏输液(BHI)肉汤中浓缩环境拭子样品,并置于37℃的厌氧室5天。以10,000 xg离心1 mL培养物,并将沉淀重悬于100μL乙醇中。
  4. 将重悬细胞(50μL)置于环丝氨酸果糖琼脂(CCFA)板上,并在37℃的厌氧室中孵育40-48小时。将分离出的艰难梭菌菌落的菌落储存在-80℃的低温条件下进一步分析。
  5. 使用乳胶凝集试剂或PCR测试疑似艰难梭菌菌落。

2.培养艰难梭菌和杀伤动力学程序

  1. 在37℃的厌氧室中,在血液琼脂平板上生长纯化的环境或临床艰难梭菌菌株48小时。
  2. 取一个分离的菌落与接种环,转移到5 mL BHI培养基在15 mL管中,并在37℃的厌氧室中生长24小时。
  3. 将培养前1:100稀释至约10 6菌落形成单位新鲜预还原BHIS(BHI加5g / L酵母提取物和1%L-半胱氨酸)补充有0.1%牛磺胆酸钠和适当浓度的抗生素(T0)的s(CFU)/ mL。
  4. 在每个时间点(T0,T6,T24,T48)用移液管收集1 mL样品,并将一小部分(连续稀释100μL)扩散/扩散到血琼脂平板上。让细胞在37℃的厌氧小室中在血琼脂平板上生长48小时,并计算所得的菌落数以确定CFU。

3.准备样品进行扫描电子显微镜

  1. 在微量离心管中从每个时间点收集1 mL细胞,并以10,000 xg离心10分钟。丢弃上清液并在PBS中洗涤细胞。
  2. 将样品以10,000xg离心10分钟,弃去上清液。在1 mL 4%多聚甲醛中稀释细胞,并在室温下孵育1 h。
  3. 离心机样品在1℃再次离心10分钟000 xg并丢弃上清液。用蒸馏水洗涤细胞两次,并在100μL蒸馏水中稀释。根据溶液的浊度调节体积。
    注意:进行多次连续稀释是一个好主意。
  4. 盖上盖子并加入40μL样品。在流动罩中孵育15分钟以蒸发液体,并允许细胞粘附到盖玻片上。如果仍然存在液体,请使用鼓风机去除液体。
  5. 将标有盖玻片的地板放在台式溅射机和胶带中。在溅射机中安全纯金。打开机器,并在低压(50 mTorr)下开始溅射。涂层细胞在80mA下30秒,这转化为20nm的金涂层。
  6. 将涂覆的细胞转移到扫描电子显微镜。

4.在扫描电子显微镜上成像艰难梭菌细胞

  1. 用扫描电子显微镜(SEM)正确放气在计算机软件上安装通风按钮。
  2. 使用碳带,将涂覆的盖玻片固定在金属台上。扫描电镜放空后,门应轻松打开。通过拧入金属台进入SEM室。
  3. 单击计算机软件上的PUMP按钮。当系统读取"Vac OK"时,SEM将可用。
  4. 点击检测器选项卡下的SE检测器。通过点击显示电压的按钮打开光束。在增加电压(高达15 kV)之前,以较低的电压(5 kV)开始成像。光束打开后会出现图像。
  5. 使用跟踪功能,在涂覆的盖玻片上找到一个区域进行图像。放大区域并找到杆状结构;这些是艰难梭菌
  6. 放大并对焦图像以校准系统。这应该在多个工作距离上完成:15,9和5 mm。工作距离为5mm的图像。
  7. 打开你ltra高分辨率成像模式,并开始集中和优化散光。
  8. 开始以高放大倍数进行对焦。使用粗略和精细的焦点切换为此。调整散光以获得更清晰的图像。
    1. 以高放大倍率调节散光。要做到这一点,调整散光切换(它们看起来类似于细/粗焦点切换),并通过数字放大计算机软件来检查图像的清晰度。
  9. 扫描慢扫描功能,以收集高质量的图像。将收集的图像保存为.TIFF文件,将用于分析。如果在分析过程中进行测量,请确保选择了数据条。
  10. 以不同的角度收集图像(通过在SEM上直接手动转动角度达52°)。有角度的图像倾向于显示更多的深度信息。
  11. 根据正在成像的单元格改变光束电压。对于所有的实验,这主要保持在5 - 15 kV之间。
  12. 成像完成后,关闭光束并将工作距离提高到20 mm。然后可以将腔室排空,并且可以移除该台。将所有图像复制到驱动器上进行进一步分析。

图像处理与分析

  1. 将免费提供的软件FIJI(http://fiji.sc)下载并安装到计算机上。
  2. 打开FIJI中的图像文件。
  3. 使用线功能,精确跟踪比例尺。
  4. 单击FIJI程序中的"分析"选项卡,最后选择"选择比例"功能。将出现一个窗口,需要根据比例尺设置已知距离。更改长度单位,然后单击确定。
  5. 现在该程序已经校准了距离,使用线路功能测量单元长度。要获取长度,请使用线功能来完整地跟踪单元格。再次选择分析选项卡,然后单击测量。应该是应用程序的长度耳朵在以前表示的单位。

结果

艰难梭菌是孢子形成细菌,因此在任何功能分析之前,必须确定营养和孢子细胞之间的形态差异。 图1显示了在生长曲线和孢子细胞的指数期捕获的营养细胞的代表性图像。如图所示,营养细胞是长而光滑的棒状结构,而孢子是具有粗糙外观的小的椭圆形结构。在功能上,营养细胞生长和分裂迅速,并通过分泌毒素来造成艰难梭菌感染的毒力,而孢子?...

讨论

目前的研究目的是创建一种高通量的方法来分离艰难梭菌 ,并使用扫描电子显微镜(SEM)作为抗菌药物药理作用的更全面表征的手段。使用本文概述的方案,我们已经证明,成像细胞对抗生素治疗的表型反应可以揭示药物的药理作用的洞察力。总的来说,该方案的成像部分在收集细胞后的持续时间大约需要2小时,但比单独的典型的杀伤动力学研究更为歧视。在学习使用SEM的同时,技术上?...

披露声明

KWG has received past and current research support from Merck & Co. and Summit, PLC.

致谢

These experiments have been supported by research grants from Merck and Co. and Summit, PLC.

材料

NameCompanyCatalog NumberComments
cotton gauze CaringPRM21408C
NaClMacron7532
50 mL tubesFalcon352098
Brain Heart Infusion (BHI) CriterionC5141
L-cysteineAlfa AesarA10389
yeast extractCriterionC741
sodium taurocholateAlfa AesarA18346
anaerobic chamberCoyvinyl anaerobic chamber
cycloserinecefoxitin fructose agar (CCFA) platesAnaerobe systemsAS-213
blood agar platesHardy diagnosticsA-10
latex agglutination reagentOxoidDR1107AC. diff test kit
microcentrifuge tubesEppendorf222363204
PBSGibco10010-031
4% paraformaldehydeFisher Scientific50-259-98
microscope slidesJ. Melvin freed brand7525M75 x 25mm
flow hoodLabconcoClass II type A2 biosafety cabinet
desk sputtering machineDenton VacuumDesk II
tapePlastic Core05072-ABSPI Double Sided Adhesive Carbon Tape
goldDenton VacuumTAR001-01582.375” Diameter x .002” Thick Gold foil
scanning electron microscopeFEIXL-30

参考文献

  1. Lessa, F. C., et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 372 (9), 825-834 (2015).
  2. Vickers, R. J., et al. Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents. 48 (2), 137-143 (2016).
  3. Shah, D., et al. Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Expert Rev Anti Infect Ther. 8 (5), 555-564 (2010).
  4. Ambrose, P. G., et al. New EMA guideline for antimicrobial development. Lancet Infect Dis. 12 (4), 265-266 (2012).
  5. Bassères, E., et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 71 (5), 1245-1251 (2016).
  6. Endres, B. T., et al. A novel method for imaging the pharmacological effects of antibiotic treatment on Clostridium difficile. Anaerobe. 40, 10-14 (2016).
  7. Endres, B. T., et al. Evaluating the Effects of Surotomycin Treatment on Clostridium difficile Toxin A and B Production, Immune Response, and Morphological Changes. Antimicrob Agents Chemother. 60 (6), 3519-3523 (2016).
  8. Alam, M. J., Anu, A., Walk, S. T., Garey, K. W. Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe. 27, 31-33 (2014).
  9. Aitken, S. L., et al. In the Endemic Setting, Clostridium difficile Ribotype 027 Is Virulent But Not Hypervirulent. Infect Control Hosp Epidemiol. , 1-6 (2015).
  10. Basseres, E., et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 71 (5), 1245-1251 (2016).
  11. Walters, B. A., Roberts, R., Stafford, R., Seneviratne, E. Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut. 24 (3), 206-212 (1983).
  12. Chilton, C. H., et al. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery. J Antimicrob Chemother. 68 (9), 2078-2082 (2013).
  13. Ofosu, A. Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol. 29 (2), 147-154 (2016).
  14. McDonald, L. C., et al. An epidemic, toxin gene-variant strain of Clostridium difficile. New Eng J Med. 353 (23), 2433-2441 (2005).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

123 fidaxomicin

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。