Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Robust derivation of human induced pluripotent stem (hiPS) cells was achieved by using non-integrating Sendai virus (SeV) vector mediated reprogramming of dermal fibroblasts. hiPS cell maintenance and clonal expansion was performed using xeno-free and chemically defined culture conditions with recombinant human laminin 521 (LN-521) matrix and Essential E8 (E8) Medium.
Xeno-free and fully defined conditions are key parameters for robust and reproducible generation of homogenous human induced pluripotent stem (hiPS) cells. Maintenance of hiPS cells on feeder cells or undefined matrices are susceptible to batch variances, pathogenic contamination and risk of immunogenicity. Utilizing the defined recombinant human laminin 521 (LN-521) matrix in combination with xeno-free and defined media formulations reduces variability and allows for the consistent generation of hiPS cells. The Sendai virus (SeV) vector is a non-integrating RNA-based system, thus circumventing concerns associated with the potential disruptive effect on genome integrity integrating vectors can have. Furthermore, these vectors have demonstrated relatively high efficiency in the reprogramming of dermal fibroblasts. In addition, enzymatic single cell passaging of cells facilitates homogeneous maintenance of hiPS cells without substantial prior experience of stem cell culture. Here we describe a protocol that has been extensively tested and developed with a focus on reproducibility and ease of use, providing a robust and practical way to generate defined and xeno-free human hiPS cells from fibroblasts.
Since the first derivation of hiPS cell lines by Takahashi et al.1,2, hiPS cells have provided a useful tool for disease modeling, drug discovery and as source material for generating cell therapies in regenerative medicine3. hiPS cell culture has long been dependent on co-culture with fibroblast feeder cells4,5 or on Matrigel6 and with media formulations containing fetal bovine serum (FBS). Batch-to-batch variances are a common consequence of the undefined nature of these culture conditions, resulting in unpredictable variations, which is a major contributor to the unreliability of these protocols7. The development of defined medium such as Essential 8 (E8)8 and defined cell culture matrices for instance LN-5219, allows for the establishment of highly reproducible protocols and aid in the robust generation and maintenance of homogenous hiPS cells7,8,9,10.
Development of integration free reprogramming techniques have been a leap forward. Originally, reprogramming depended on retroviral vectors which randomly integrated into the genome with disruptive effects on genomic integrity11. Advances in reprogramming methodologies includes the development of RNA based vectors. RNA vectors have an advantage over the DNA based reprogramming method as unintended integration through genomic recombination is not possible12. SeV vectors provide high and transient expression of exogenous factors through single-stranded RNA without a DNA-phase11. The reprogramming vectors delivered by the SeV are diluted throughout cell expansion and eventually shed from culture providing a foot-print free way of reprogramming. Thereafter, maintenance of pluripotency is dependent on endogenous expression of the pluripotency genes2.
As pioneering hiPS cell based therapies are beginning to move into clinical trials, the demands for standardized batches, reproducibility, and safety are essential issues to address13. Therefore, products of animal origin should be avoided. For instance, the use of xenogeneic products has been associated with risk of nonhuman pathogen contamination. Also, cells cultured in the presence of animal derived culture components have been shown to incorporate nonhuman siliac acids into cell membranes which threatens to render derived cells immunogenic14. Hence, the need to eliminate xenogeneic products is necessary to any future clinical pursuits. This protocol applies xeno-free and defined culture in the maintenance of hiPS cells moving cells closer to clinical compliance.
This protocol describes a consistent, highly reproducible and easy-to-use method that generates standardized hiPS cells from fibroblasts. It also offers a user-friendly culture system for the maintenance of established hiPS cells. This protocol has been used to derive more than 300 hiPS cell lines in the Swedish national human iPS Core facility at Karolinska Institutet of which some lines have previously been described15,16.
The collection of patient material and derivation of hiPS cells is approved by the Ethics Review Board, Stockholm, March 28, 2012, Registration number: 2012/208-31/3. Cell culture steps should be performed in biosafety cabinets unless otherwise mentioned. Always practice sterile handling techniques when working with cells. Allow media, plates and reagents to reach room temperature before starting. Incubate cells at 37 ᵒC, 5% CO2 in high humidity.
1. Isolation of Human Fibroblasts from Dermal Biopsy
2. SeV Vector Reprogramming of Fibroblasts
3. Picking of Colonies and Expansion of hiPS Cells
NOTE: The following steps are done outside of the biosafety cabinet under a stereo microscope. The use of hairnet and procedure masks are recommended. Work carefully not to contaminate the cell culture.
From biopsy to hiPS cells
The entire process from biopsy to established hiPS cells, clear of reprogramming vector and ready for characterization, takes approximately 16 weeks (Figure 1). A more detailed timeline is specified in Figure 2A. Approximately 4 weeks is needed to establish and expand fibroblast cultures. The first hiPS cell colonies started to emerge about three-...
The expected result of this protocol is the successful generation of several clonally derived hiPS cell lines. Importantly, the method for the maintenance of and expansion of established hiPS cells here described is reliable and can be performed with little prior experience of stem cell culture. Enzymatic single cell passaging with ROCKi together with the LN-521 matrix is known to maintain cells as karyotypically normal, pluripotent and readily able to differentiate while avoiding induced heterogeneity that colony based ...
The authors have no conflicts of interests to report.
This work was supported by SSF (B13-0074) and VINNOVA (2016-04134) funding agents.
Name | Company | Catalog Number | Comments |
Dispase | Life Technologies | 171105-041 | Biopsy digestion |
Collagenase | Sigma | C0130 | Biopsy digestion |
Gelatin | Sigma | G1393 | Fibroblast matrix |
IMDM | Life Technologies | 21980002-032 | Fibroblast medium |
FBS | Invitrogen | 10270106 | Fibroblast medium |
Penicillin/Streptomycin | Life Technologies | 15070-063 | Antibiotic |
Essential 8 media | ThermFisher Scientific | A1517001 | iPS cell culture media |
LN-521 | Biolamina | LN521-03 | iPS cell culture matrix |
TrypLE select 1X | ThermoFisher Scientific | 12563011 | Dissociation reagent |
Rho-kinase inhibitor Y27632 | Millipore | SCM075 | Rho-kinase inhibitor (ROCKi) |
CytoTune – iPS 2.0 reprogramming kit | Life Technologies | A1377801 | Sendai virus reprogramming vector |
35 mm tissue culture dish | Sarstedt | 83.3900.300 | Cell culture |
60 mm tissue culture dishes | Sarstedt | 83.3901.300 | Cell culture |
24 well tissue culture plates | Sarstedt | 83.3922.300 | Cell culture |
T25 tissue culture flasks | VWR | 734-2311 | Cell culture |
15 mL tubes | Corning | 430791 | Centrifuge tubes |
1.5 mL tube | Eppendorf | 0030123.301 | 1.5 mL tube |
CoolCell cell LX | Biocision | BCS-405 | Freezing container |
DMSO | Sigma | D2650-100ml | Fibroblast freezing |
Cryovials 1.8 mL | VWR | 479-6847 | Cryovials |
PSC Cryopreservation Kit | Gibco | A2644601 | PSC CryomediumRevitaCell supplement |
Trypsin-EDTA (0.05%) | ThermoFisherScientific | 25300054 | Fibroblast dissociation enzyme |
DMEM/F12 | Life Technologies | 31331-028 | Digestive enzymes dilutant |
DPBS | Life Technologies | 14190-094 | PBS |
HBSS | ThermoFIsher Scientific | 14025-050 | Biopsy preparation |
Haemocytometer | Sigma | BRAND, 718920 | Cell counting |
Parafilm | VWR | 291-1213 | Sealing plates for storage |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone