Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
La dérivation robuste des cellules de la tige pluripotente induite par l'homme (hiPS) a été réalisée en utilisant une reprogrammation médiée par vecteur de virus Sendai non-intégrant (SeV) des fibroblastes dermiques. La maintenance cellulaire de hiPS et l'expansion clonale ont été réalisées en utilisant des conditions de culture sans xénon et chimiquement définies avec une matrice recombinante de la laminine humaine 521 (LN-521) et un milieu E8 (E8) essentiel.
Les conditions exemptes de Xeno et totalement définies sont des paramètres clés pour la génération robuste et reproductible de cellules souches pluripotentes induites par l'homme (hiPS) homogènes. La maintenance des cellules HiPS sur les cellules nourricières ou les matrices non définies sont sensibles aux variances discontinues, à la contamination pathogène et au risque d'immunogénicité. L'utilisation de la matrice recombinante de la laminine humaine 521 (LN-521) définie en combinaison avec des formulations de média xénoïdes et définies réduit la variabilité et permet la génération cohérente de cellules HiPS. Le vecteur de virus Sendai (SeV) est un système à base d'ARN non intégrant, contournant ainsi les préoccupations liées à l'effet perturbateur potentiel sur les vecteurs intégrant l'intégrité du génome. En outre, ces vecteurs ont démontré une efficacité relativement élevée dans la reprogrammation des fibroblastes dermiques. En outre, le passage enzymatique à une seule cellule des cellules facilite l'entretien homogène des cellules HiPS sans une expérience préalable substantielle de la tigeLl culture. Ici, nous décrivons un protocole qui a été largement testé et développé en mettant l'accent sur la reproductibilité et la facilité d'utilisation, fournissant un moyen robuste et pratique de générer des cellules hiPS humaines définies et exemptes de xénon à partir de fibroblastes.
Depuis la première dérivation des lignées cellulaires hiPS par Takahashi et al. 1 , 2 , les cellules HiPS ont fourni un outil utile pour la modélisation de la maladie, la découverte de médicaments et comme matériau de base pour la génération de thérapies cellulaires dans la médecine régénératrice 3 . La culture cellulaire hiPS a longtemps dépendu de la co-culture avec des cellules nourrissantes de fibroblastes 4 , 5 ou sur Matrigel 6 et avec des formulations de média contenant du sérum bovin fœtal (FBS). Les variances de lot à lot sont une conséquence courante de la nature indéfinie de ces conditions de culture, ce qui entraîne des variations imprévisibles, ce qui contribue grandement à la non fiabilité de ces protocoles 7 . Le développement de moyens définis tels que Essential 8 (E8) 8 et des matrices de culture cellulaire définies, par exemple LN-521 9 , permettentS pour l'établissement de protocoles hautement reproductibles et aide à la génération et à la maintenance robustes des cellules HiPS homogènes 7 , 8 , 9 , 10 .
Le développement de techniques de reprogrammation sans intégration a été un bond en avant. À l'origine, la reprogrammation dépendait de vecteurs rétroviraux qui s'établissaient de manière aléatoire dans le génome avec des effets perturbateurs sur l'intégrité génomique 11 . Les progrès dans les méthodologies de reprogrammation comprennent le développement de vecteurs à base d'ARN. Les vecteurs d'ARN ont un avantage par rapport à la méthode de reprogrammation basée sur l'ADN car une intégration involontaire par recombinaison génomique n'est pas possible 12 . Les vecteurs SeV fournissent une expression élevée et transitoire de facteurs exogènes par l'ARN monocaténaire sans phase d'ADN 11 . Les vecteurs de reprogrammation livrés par le SeVSont dilués tout au long de l'expansion de la cellule et finissent par se débarrasser de la culture en fournissant un mode de reprogrammation sans impression imprimée. Par la suite, le maintien de la pluripotence dépend de l'expression endogène des gènes de pluripotence 2 .
Au fur et à mesure que les thérapies basées sur les cellules hiPS avancées commencent à se lancer dans des essais cliniques, les demandes de lots, de reproductibilité et de sécurité standardisés sont des problèmes essentiels à résoudre 13 . Par conséquent, les produits d'origine animale devraient être évités. Par exemple, l'utilisation de produits xénogénétiques a été associée au risque de contamination par des agents pathogènes non humains. En outre, les cellules cultivées en présence de composants de culture dérivés d'animaux ont montré qu'ils incorporent des acides siliques non humains dans des membranes cellulaires qui menacent de rendre les cellules dérivées immunogènes 14 . Par conséquent, la nécessité d'éliminer les produits xénogénétiques est nécessaire à toute poursuite clinique future. Ce protocole s'applique xeUne culture non libre et définie dans la maintenance des cellules HiPS se déplace des cellules plus près de la conformité clinique.
Ce protocole décrit une méthode cohérente, hautement reproductible et facile à utiliser qui génère des cellules HiPS normalisées à partir de fibroblastes. Il offre également un système de culture convivial pour la maintenance de cellules hiPS établies. Ce protocole a été utilisé pour dériver plus de 300 lignées cellulaires hiPS dans l'installation suédoise nationale iPS Core chez Karolinska Institutet dont certaines lignes ont déjà été décrites 15 , 16 .
La collecte du matériel du patient et la dérivation des cellules HiPS sont approuvées par le Ethics Review Board, Stockholm, le 28 mars 2012, numéro d'enregistrement: 2012 / 208-31 / 3. Les étapes de culture cellulaire doivent être effectuées dans des armoires de sécurité biologique, sauf mention contraire. Toujours pratiquer des techniques de manipulation stérile lorsque vous travaillez avec des cellules. Permet aux médias, les plaques et les réactifs d'atteindre la température ambiante avant de commencer. Incuber les cellules à 37 ° C, 5% de CO 2 à haute humidité.
1. Isolation des fibroblastes humains à partir de biopsie cutanée
2. Reprogramme Vectorielle SeV des Fibroblastes
3. Picking of Colonies and Expansion of HiPS Cells
REMARQUE: les étapes suivantes sont effectuées en dehors du coffret de sécurité biologique sous un microscope stéréo. L'utilisation de masques de défilement et de procédure est recommandée. Travailler soigneusement pour ne pas contaminer la culture cellulaire.
De la biopsie aux cellules HiPS
L'ensemble du processus, de la biopsie aux cellules hiPS établies, sans vecteur de reprogrammation et prêt à être caractérisé, prend environ 16 semaines ( Figure 1 ). Un calendrier plus détaillé est spécifié dans la figure 2A . Il faut environ 4 semaines pour établir et développer des cultures de fibroblastes. Les première...
Le résultat attendu de ce protocole est la génération réussie de plusieurs lignées cellulaires hiPS dérivées de manière clonale. Il est important de noter que la méthode pour la maintenance et l'expansion des cellules hiPS établies ici décrit est fiable et peut être effectuée avec peu d'expérience préalable de la culture de cellules souches. Le transfert enzymatique d'une seule cellule avec ROCKi avec la matrice LN-521 est connu pour maintenir les cellules comme caryotypiquement normales, plur...
Les auteurs n'ont aucun conflit d'intérêts à signaler.
Ce travail a été soutenu par des agents de financement SSF (B13-0074) et VINNOVA (2016-04134).
Name | Company | Catalog Number | Comments |
Dispase | Life Technologies | 171105-041 | Biopsy digestion |
Collagenase | Sigma | C0130 | Biopsy digestion |
Gelatin | Sigma | G1393 | Fibroblast matrix |
IMDM | Life Technologies | 21980002-032 | Fibroblast medium |
FBS | Invitrogen | 10270106 | Fibroblast medium |
Penicillin/Streptomycin | Life Technologies | 15070-063 | Antibiotic |
Essential 8 media | ThermFisher Scientific | A1517001 | iPS cell culture media |
LN-521 | Biolamina | LN521-03 | iPS cell culture matrix |
TrypLE select 1X | ThermoFisher Scientific | 12563011 | Dissociation reagent |
Rho-kinase inhibitor Y27632 | Millipore | SCM075 | Rho-kinase inhibitor (ROCKi) |
CytoTune – iPS 2.0 reprogramming kit | Life Technologies | A1377801 | Sendai virus reprogramming vector |
35 mm tissue culture dish | Sarstedt | 83.3900.300 | Cell culture |
60 mm tissue culture dishes | Sarstedt | 83.3901.300 | Cell culture |
24 well tissue culture plates | Sarstedt | 83.3922.300 | Cell culture |
T25 tissue culture flasks | VWR | 734-2311 | Cell culture |
15 mL tubes | Corning | 430791 | Centrifuge tubes |
1.5 mL tube | Eppendorf | 0030123.301 | 1.5 mL tube |
CoolCell cell LX | Biocision | BCS-405 | Freezing container |
DMSO | Sigma | D2650-100ml | Fibroblast freezing |
Cryovials 1.8 mL | VWR | 479-6847 | Cryovials |
PSC Cryopreservation Kit | Gibco | A2644601 | PSC CryomediumRevitaCell supplement |
Trypsin-EDTA (0.05%) | ThermoFisherScientific | 25300054 | Fibroblast dissociation enzyme |
DMEM/F12 | Life Technologies | 31331-028 | Digestive enzymes dilutant |
DPBS | Life Technologies | 14190-094 | PBS |
HBSS | ThermoFIsher Scientific | 14025-050 | Biopsy preparation |
Haemocytometer | Sigma | BRAND, 718920 | Cell counting |
Parafilm | VWR | 291-1213 | Sealing plates for storage |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon