Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Leukocytes avidly interact with vascular cells and platelets after vessel wall injury or during inflammation. Here, we describe a straightforward laminar flow-based assay to characterize the molecular mechanisms that underlie the interactions between leukocytes and their cellular partners.
The recruitment of leukocytes upon injury or inflammation to sites of injury or tissue damage has been investigated during recent decades and has resulted in the concept of the leukocyte adhesion cascade. However, the exact molecular mechanisms involved in leukocyte recruitment have not yet been fully identified. Since leukocyte recruitment remains an important subject in the field of infection, inflammation, and (auto-) immune research, we present a straightforward laminar flow-based assay to study underlying mechanisms of the adhesion, de-adhesion, and transmigration of leukocytes under venous and arterial flow regimes. The in vitro assay can be used to study the molecular mechanisms that underlie the interactions between leukocytes and their cellular partners in different models of vascular inflammation. This protocol describes a laminar flow-based assay using a parallel-flow chamber and an inverted phase contrast microscope connected to a camera to study the interactions of leukocytes and endothelial cells or platelets, which can be visualized and recorded then analyzed offline. Endothelial cells, platelets, or leukocytes can be pretreated with inhibitors or antibodies to determine the role of specific molecules during this process. Shear conditions, i.e. arterial or venous shear stress, can be easily adapted by the viscosity and flow rate of the perfused fluids and the height of the channel.
Upon injury, inflammation, or infection, leukocytes quickly respond to pathogen- or damage-associated molecular patterns (PAMPs, DAMPs), change into an activated state, and move out of the blood stream to sites of inflammation and tissue damage. The ability of leukocytes to interact with their cellular and molecular environment is essential for their correct function as immune cells, as highlighted by genetic disorders such as leukocyte adhesion deficiency1. Leukocyte adhesion has been the subject of intense investigation during the past decades and this has resulted in the concept of the leukocyte adhesion cascade in the early 1990s2,3. Leukocyte adhesion is initiated by the selectin-mediated capture of leukocytes to the endothelium, causing the cells to roll over the vascular surface. This rolling enables leukocytes to scan for endothelium-bound migratory cues, e.g., chemokines, which induce the activation of integrins. Subsequently, the activated integrins mediate the binding to endothelial ligands, resulting in firm leukocyte arrest. Leukocytes may subsequently prepare to extravasate by crawling and spreading, before penetrating the endothelial monolayer and transmigrating into the underlying tissue. The basic concept of the canonical leukocyte cascade has remained largely unchanged since its introduction, with some intermediate steps added4. Nevertheless, the exact molecular mechanisms and the roles of the many players involved in leukocyte recruitment have not been clarified thus far, and leukocyte recruitment remains an important subject in the field of infection, inflammation, and (auto-) immune research.
For example, during vascular inflammatory diseases such as atherosclerosis, increased leukocyte recruitment into the vessel wall drives plaque development. Unstable atherosclerotic plaques might rupture, leading to massive activation of platelets and the coagulation system, and subsequently to occlusion of the vessel5. This may result in severe cardiovascular outcomes such as myocardial infarction or stroke. In addition, endothelial denudation as it occurs clinically, e.g. after stenting of a coronary artery, leads to a multitude of interactions of leukocytes and platelets to the exposed vessel wall interior (e.g., matrix components and smooth muscle cells) and of leukocytes with platelets covering the vascular injury. These interactions are important for the further development of the disease as monocyte-platelet interactions might drive neointima formation6,7. In addition, platelet-leukocyte interactions mediated by leukocyte integrin Mac-1 (αMβ2) and platelet GPIbα have recently been identified as novel drivers of thrombosis in mice8.
Given the wide availability of human and animal blood as a source of leukocytes and platelets for research, and the broad spectrum of isolated matrix molecules and immortalized cell lines of leukocyte and vascular origin, it is feasible to simulate leukocyte interactions under flow in a laboratory setting, using specially designed flow perfusion chambers. Many variants have been designed over the past decades, ranging from vacuum-driven to self-adhesive perfusion chambers. All variants have in common that the immobile part (e.g., cultured vascular cells or matrix proteins) is assembled into a larger leak-proof chamber equipped with a pre-defined channel enabling perfusion of fluids over the immobile part. In addition, advances in molding technology enabled the development of custom-made solutions based on silica polymers9. The viscosity and flow rate of the perfused fluids and the height of the channel mainly determine the shear stress characteristics of the flow perfusion device10. In this article, we present an in vitro method to study underlying mechanisms of the adhesion, de-adhesion, and transmigration of leukocytes under venous and arterial flow regimes. The advantage of the methods presented here is that they can be performed using a common camera-connected fluorescence microscope, and do not require a experimenters to possess high technical proficiency. The in vitro assay can be manipulated in many ways (e.g., by adding inhibitors or blocking antibodies), and is thus applicable in different models of vascular inflammation and allows the investigation of adhesion protein functions or the evaluation of specific compounds.
All methods described here have been approved by the Medical Ethical and Animal Ethical Boards of Maastricht University.
1. Flow-Based Assay with Human Cells
2. Flow-based Assay with Murine Cells
3. Fluorescent Labeling and Perfusion of Leukocytes (PMN or THP-1 for Human and RAW264.7 or Primary Mouse Monocytes for Murine Flow-Based Assay)
To study endothelial-leukocyte adhesion, fluorescently labeled THP-1 cells were perfused over a TNFα- or non-stimulated endothelial monolayer for 2 min at 3 dyne/cm2. The total number of adherent monocytic cells was determined after 2 min of perfusion by capturing 6 independent fields over a period of 2-6 min. The adherent cells were quantified in at least 6 pictures captured with an inverted phase contrast/fluorescence microscope (e.g., EVOS-FL) using 10X magnifi...
This in vitro assay is a straightforward method to investigate underlying mechanisms of leukocyte recruitment during vascular inflammation, but there are some critical points to be noted. The first requirement for successfully performing this assay is the perfusion of leukocytes over an intact and confluent vascular or platelet monolayer. This can be achieved by prior coating of the surfaces with collagen type I. In general, when working with primary vascular cells, it is important to gently detach cells using t...
The authors have nothing to disclose.
We thank Drs. Martin M. Schmitt and Line Fraemohs. This work was supported by the Netherlands Foundation for Scientific Research (ZonMW VIDI 016.126.358, the Landsteiner Foundation for Blood Transfusion Research (LSBR Nr. 1638) and Deutsche Forschungsgemeinschaft (SFB1123/A2) awarded to R.R.K.
Name | Company | Catalog Number | Comments |
Inverted fluorescence microscope e.g. EVOS-FL | Life Technologies Europe bv | ||
Pump e.g. model: 210-CE | world precision instruments | 78-9210W | |
Falcon 35 mm TC-Treated Easy-Grip Style Cell Culture Dish | corning | 353001 | |
50 mL syringe | Becton Dickinson | 300137 | |
Silicone tubing | VWR | 228-0700 | |
Elbow Luer Connector Male | Ibidi | 10802 | |
Female Luer Lock Coupler | Ibidi | 10823 | |
Flow chamber | University Hospital RWTH Aachen | Patent DE10328277A1: Baltus T, Dautzenberg R, Weber CPD. Strömungskammer zur in-vitro-Untersuchung von physiologischen Vorgängen an Zelloberflächen. 2005. | |
Ibidi sticky slide VI 0.4 | Ibidi | 80608 | |
Coverslips for sticky slides | Ibidi | 10812 | |
Collagen Type I, rat tail | Life Technologies Europe bv | A1048301 | |
Recombinant Human TNF-α | Peprotech | 300-01A | |
Thrombin Receptor Activator for Peptide 6 (TRAP - 6) | Anaspec / Eurogentec | 24191 | |
SYTO 13 green fluorescent nucleic acid stain | Life Technologies Europe bv | S7575 | |
Hanks’ Balanced Salt Solution 10x | Sigma-Aldrich Chemie | H4641 | |
HEPES buffer solution 1M, liquid | Life Technologies Europe bv | 15630049 | |
BUMINATE Albumin, 25% | Baxter | 60010 | |
Water for injection | B. Braun | 3624315 | |
Calcium chloride dihydrate | Merck | 102382 | |
Magnesium chloride hexahydrate | Sigma-Aldrich Chemie | M2670 | |
Apyrase | Sigma-Aldrich Chemie | A6535 | |
Primary Human Umbilical Vein Endothelial Cells (HUVEC) | Promocell GmbH | C-12203 | |
Endothelial Cell Growth Medium (Ready-to-use) | Promocell GmbH | C-22010 | |
Primary Human Aortic Endothelial Cells (HAoEC) | ATCC | PCS-100-011 | |
Vascular Cell Basal Medium | ATCC | PCS-100-030 | |
Endothelial Cell Growth Kit-BBE | ATCC | PCS-100-040 | |
Primary Human Aortic Smooth Muscle Cells (HAoSMC) | ATCC | PCS-100-012 | |
Vascular Smooth Muscle Cell Growth Kit | ATCC | PCS-100-042 | |
Human endothelial cell line, EA.hy926 | ATCC | CRL-2922 | |
Dulbecco's Modified Eagle's Medium (DMEM) | ATCC | 30-2002 | |
Mouse endothelial cell line, SV 40 transformed (SVEC4-10) | ATCC | CRL-2181 | |
Human Monocytic cell line, THP-1 | DSMZ | ACC-16 | |
RPMI 1640 with Ultra-Glutamine | Lonza | BE12-702F/U1 | |
Mouse monocyte/macrophage RAW264.7 | ATCC | TIB-71 | |
Dulbecco's Modified Eagle's Medium (DMEM), high glucose | Gibco | 11965092 | |
Accutase | Promocell GmbH | C-41310 | |
Percoll | Sigma-Aldrich Chemie | P1644 | |
Histopaque 1119 | Sigma-Aldrich Chemie | 11191 | |
10x PBS | Life Technologies Europe bv | 14200075 | |
BD Vacutainer Plastic Blood Collection Tubes with Sodium Heparin | Becton Dickinson | 367876 | |
VACUETTE TUBE 9 ml 9NC Coagulation sodium citrate 3.2% | Greiner Bio | 455322 | |
HCl/EtOH mixture (1.2 mol/L HCl and 50% ethanol) in water | Sigma-Aldrich Chemie | Prepare by mixing 0.3L HCl (4 mol/L) with 0.7L of 70% v/v ethanol in a fume hood |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone