Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here we describe a method to separate and enrich components of the tumor immune and non-immune microenvironment in established subcutaneous tumors. This technique allows for the separate analysis of tumor immune infiltrate and non-immune tumor fractions which can permit comprehensive characterization of the tumor immune microenvironment.
The tumor immune microenvironment (TIME) has recently been recognized as a critical mediator of treatment response in solid tumors, especially for immunotherapies. Recent clinical advances in immunotherapy highlight the need for reproducible methods to accurately and thoroughly characterize the tumor and its associated immune infiltrate. Tumor enzymatic digestion and flow cytometric analysis allow broad characterization of numerous immune cell subsets and phenotypes; however, depth of analysis is often limited by fluorophore restrictions on panel design and the need to acquire large tumor samples to observe rare immune populations of interest. Thus, we have developed an effective and high throughput method for separating and enriching the tumor immune infiltrate from the non-immune tumor components. The described tumor digestion and centrifugal density-based separation technique allows separate characterization of tumor and tumor immune infiltrate fractions and preserves cellular viability, and thus, provides a broad characterization of the tumor immunologic state. This method was used to characterize the extensive spatial immune heterogeneity in solid tumors, which further demonstrates the need for consistent whole tumor immunologic profiling techniques. Overall, this method provides an effective and adaptable technique for the immunologic characterization of subcutaneous solid murine tumors; as such, this tool can be used to better characterize the tumoral immunologic features and in the preclinical evaluation of novel immunotherapeutic strategies.
The suppressive TIME has recently been recognized as a hallmark of cancer, and is known to play a significant role in the development, progression, and protection of solid tumor cancers as well as mitigate their susceptibility to immunotherapy1. The TIME is composed of numerous cellular subsets and phenotypes, all of which provide critical insight into the immunologic state of the tumor. These immunologic subsets can be further stratified into cells of lymphocyte or myeloid origin, which together constitute the majority of the innate and adaptive immune responses2,3. Recent advances in the field of cancer immunotherapy have demonstrated that immunotherapeutic strategies (i.e., immune checkpoint inhibitors, chimeric antigen receptor T-cells, etc.) have the potential to induce durable cancer regressions; however, they remain relatively ineffective in solid tumor cancers4,5. Numerous groups have shown the critical hurdle that the TIME can play on treatment success6,7, and thus, there remains a need to accurately evaluate new immunotherapies in the pre-clinical setting specifically focusing on their ability to modulate or overcome the TIME8.
Current efforts to characterize the TIME typically utilize either microscopy or flow cytometry along with antibody labeling strategies to identify immune cellular subsets and their features9,10. These two strategies provide uniquely different information, as microscopy allows spatial appreciation of cellular subsets and flow cytometry provides high throughput and broader quantification of cellular changes. Despite the recent improvements in fluorescent multiplex immunohistochemistry optimizing spectral imaging systems, which now can support up to 7 parameters, limited panel size makes broad level immune profiling difficult and thus this technique is often reserved for more focused analyses. As a result, flow cytometry remains one of the most widely used immune profiling techniques. Despite its widespread use in TIME characterization, the methods used for processing and staining are quite variable. Most often protocols utilize a tumor dissociating enzyme (i.e., collagenases, DNase, etc.) and manual dissociation methods to achieve single-cell suspensions, followed by antibody staining and analysis7. Despite the benefits of each method, numerous groups have shown the extensive variability that can be induced through these techniques11. This makes cross-study comparisons of tumor microenvironment profiling extremely difficult, even when assessing the same murine tumor model. Furthermore, these methods provide limited potential to assess tumor cellular and tumor immune infiltrate components independently, since both components are interspersed after digestion. Sample quantity then limits multi-panel staining and analysis, which becomes a major issue when attempting to characterize rare immunologic subsets (i.e., tumor-specific T-cells)12. More recent techniques such as mass cytometry, or cytometry by time of flight (CyTOF), allow high-dimensional phenotypic analysis of cellular subsets with some systems supporting panel designs of greater than 42 independent parameters13. Despite the tremendous power of CyTOF technology in immune profiling, it remains limited because of the expense, analysis expertise, and the access to the equipment. In addition, many CyTOF protocols recommend purification of immune subsets to improve signal-to-noise ratios14, and thus we suggest that our enrichment method could be used upstream of CyTOF analysis to improve data quality.
Herein we describe a tumor microenvironment digestion and analysis method that incorporates tumor immune infiltrate separation. The purpose of this method is to allow independent high-throughput profiling of the tumor immune infiltrate and tumor cellular fractions for broader characterization of the tumor microenvironment. Using this method, we further demonstrate the importance of performing whole tumor analysis, as a subcutaneous solid tumor model was found to have significant spatial immunologic heterogeneity. Overall, this method can more accurately and consistently compare between samples because it enriches for immune cellular subsets within the tumor and allows for independent profiling of tumor cell and immune fractions of a tumor.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Baylor College of Medicine.
1. Tumor Harvest and Digestion
NOTE: The time required for harvest is ~3 - 5 min/tumor, and the time required for processing is ~1 h + 2 - 3 min/tumor.
2. Separation of Immune and Tumor Cellular Fractions
NOTE: The time required for this step is approximately 1 h.
3. Plating and Staining
Note: The time required for plating is 30 s/tumor; the time required for surface staining is 1 h; the time required for intracellular staining is 40 min; the time required for flow cytometry analysis is 1 - 4 min/tumor.
Our results demonstrate the significant benefit of TIL separation from non-immune tumor components, as explained in the protocol. Additionally, using the described method we demonstrate the significant immunologic heterogeneity of established solid tumors.
A significant problem with many tumor dissociation techniques is the loss of sample viability, most often as a result of harsh digestion conditions (i.e., elevated te...
The TIME is composed of diverse and complex cellular components and molecules. Recent evidence suggests that accurate characterization of this environment can provide a better understanding of treatment success or failure, and can even help identify mechanisms of therapeutic resistance. For example, increasing intratumoral levels of various immunosuppressive cells (i.e., MDSCs, T regulatory cells, etc.) can mitigate effector immune responses and abrogate immunotherapeutic effects. On the other hand, the...
The authors have nothing to disclose.
JMN acknowledges financial support from National Institute of General Medical Sciences (T32GM088129) and the National Institute of Dental & Craniofacial Research (F31DE026682) both of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This project was also supported by the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the NIH (P30 AI036211, P30 CA125123, and S10 RR024574) and the expert assistance of Joel M. Sederstrom.
Name | Company | Catalog Number | Comments |
6 to 12 week old male C57BL/6 mice | Jackson Laboratory | N/A | Mice used in our tumor studies |
MEER Murine Syngeneic Cancer Cell line | Acquired from collaborator | N/A | E6/E7 HPV antigen expressing murine tonsillar epithelial cancer cell line |
70% isopropyl alcohol | EMD Milipore | PX1840 | |
Murine surgical tool kit | World Precision Instruments | MOUSEKIT | Primarily only need scissors, tweezers, and a scalpel. |
24-well plate | Denville Scientific Inc. | T1024 | Or any 24-well flat bottom plate. |
RPMI-1640 media | Sigma-Aldrich | R0883 | |
Collagenase I | EMD Milipore | 234153 | |
Collagenase IV | Worthington Biochemical Corporation | LS004189 | |
DNase I | Sigma-Aldrich | 11284932001 | |
Low Speed Orbital Shaker | BioExpress (supplier: Genemate) | S-3200-LS | Or any orbital shaker. |
Thermoregulating incubator | Fisher Scientific | 13-255-27 | Or any other thermo-regulated incubator |
FBS | Sigma-Aldrich | F8192 | |
EDTA | AMRESCO | E177 | |
1 mL Pipette and tips | Eppendorf | 13-690-032 | Or any other pipette and tips |
40 um Cell Strainers | Fisher Scientific | 22363547 | |
50 mL Centrifuge Tubes | Denville Scientific Inc. | C1062-P | |
15 mL Conical Tubes | Denville Scientific Inc. | C1012 | |
10 mL Luer-Lok Syringe without needles | BD | 309604 | |
Lymphoprep Density Gradient Medium | STEMCELL Technologies | 7811 | |
Transfer Pipettes | Denville Scientific Inc. | P7212 | |
96-well U-bottom plates | Denville Scientific Inc. | ||
DPBS | Sigma Aldrich | D8573 | |
FoxP3 Transcription Factor Staining Buffer Set | ThermoFisher Scientific | 00-5523-00 | Fix/Permeabilization Buffer and Permeabilization Buffer |
Thermoregulated Centrifuge | Eppendorf | 5810 R | |
Attune NxT Flow Cytometer | ThermoFisher Scientific | N/A | For 96-well cell volumetric counting |
Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block) Clone 2.4G2 | ThermoFisher Scientific | 553141 | Fc Block |
LIVE/DEAD Fixable Blue Dead Cell Stain Kit, for UV excitation | ThermoFisher Scientific | L34962 | Fixable viability stain |
CD45 Monoclonal Antibody (30-F11), APC-eFluor 780 | ThermoFisher Scientific | 47-0451-80 | |
TCR beta Monoclonal Antibody (H57-597), APC | ThermoFisher Scientific | 17-5961-82 | |
CD8-α Antibody (KT15), PE | Santa Cruz Biotechnology | sc-53473 | |
CD4 Monoclonal Antibody (GK1.5), PE-Cyanine5 | ThermoFisher Scientific | 15-0041-81 | |
MHC Class II (I-A/I-E) Monoclonal Antibody (M5/114.15.2), Alexa Fluor 700 | ThermoFisher Scientific | 56-5321-82 | |
CD11c Monoclonal Antibody (N418), PE-Cyanine5 | ThermoFisher Scientific | 15-0114-82 | |
F4/80 Monoclonal Antibody (BM8), eFluor 450 | ThermoFisher Scientific | 48-4801-80 | |
CD11b Monoclonal Antibody (M1/70), APC | ThermoFisher Scientific | 17-0112-81 | |
Ly-6G (Gr-1) Monoclonal Antibody (RB6-8C5), PE | ThermoFisher Scientific | 12-5931-82 | |
CD274 (PD-L1, B7-H1) Monoclonal Antibody (MIH5), PE-Cyanine7 | ThermoFisher Scientific | 25-5982-80 | |
CD273 (B7-DC) Monoclonal Antibody (122), PerCP-eFluor 710 | ThermoFisher Scientific | 46-9972-82 | |
Ki-67 Monoclonal Antibody (B56), BV711 | BD Biosciences | 563755 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone