Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present a surgical method to induce right ventricular hypertrophy and failure in rats.
Right ventricular (RV) failure induced by sustained pressure overload is a major contributor to morbidity and mortality in several cardiopulmonary disorders. Reliable and reproducible animal models of RV failure are therefore warranted in order to investigate disease mechanisms and effects of potential therapeutic strategies. Banding of the pulmonary trunk is a common method to induce isolated RV hypertrophy but in general, previously described models have not succeeded in creating a stable model of RV hypertrophy and failure.
We present a rat model of pressure overload induced RV hypertrophy caused by pulmonary trunk banding (PTB) that enables different phenotypes of RV hypertrophy with and without RV failure. We use a modified ligating clip applier to compress a titanium clip around the pulmonary trunk to a pre-set inner diameter. We use different clip diameters to induce different stages of disease progression from mild RV hypertrophy to decompensated RV failure.
RV hypertrophy develops consistently in rats subjected to the PTB procedure and depending on the diameter of the applied banding clip, we can accurately reproduce different disease severities ranging from compensated hypertrophy to severe decompensated RV failure with extra-cardiac manifestations.
The presented PTB model is a valid and robust model of pressure overload induced RV hypertrophy and failure that has several advantages to other banding models including high reproducibility and the possibility of inducing severe and decompensated RV failure.
The right ventricle (RV) can adapt to a persistent pressure overload. In time, however, adaptive mechanisms fail to sustain cardiac output, the RV dilates and eventually the RV fails. RV function is the main prognostic factor of several cardiopulmonary disorders including pulmonary arterial hypertension (PAH), thromboembolic pulmonary hypertension (CTEPH), and various forms of congenital heart disease with a pressure (or volume) overload of the RV. Despite intense treatment, RV failure remains a predominant cause of death in these conditions.
As a consequence of the unique properties1,2 and embryological development3 of the RV, knowledge derived from left heart failure cannot simply be extrapolated to right heart failure. Animal models of right heart failure are therefore needed in order to investigate the mechanisms of RV failure and potential pharmacological treatment strategies.
There are experimental models of pulmonary hypertension induced by SU5416 combined with hypoxia (SuHx)4 or monocrotaline (MCT)5, which induce RV failure secondary to disease in the pulmonary vasculature. These models are used to evaluate therapeutic effects of drugs that target the pulmonary vasculature. Both the SuHx and the MCT model are non-fixed afterload models of RV failure. Consequently, it is not possible to conclude if an improvement in RV function after an intervention is secondary to afterload reducing pulmonary vascular effects or if it is caused by direct effects on the RV. In addition, the MCT model has several extra-cardiac effects.
In experimental pulmonary trunk banding models, the afterload of the RV is fixed due to a mechanical constriction of the pulmonary trunk. This allows for the investigation of direct cardiac effects of an intervention on the RV independent from any pulmonary vascular effects6,7,8,9. Usually, the banding is performed by placing a needle along the pulmonary trunk. Then a ligature is placed around the needle and the pulmonary trunk and tied with a knot, and the needle is removed leaving the suture around the pulmonary trunk. Depending on the gauge of the needle, different degrees of constrictions can be applied, but despite this approach being widely used, it has some disadvantages. First, the diameter of the banding is not exactly the same as the outer diameter of the needle as the ligature is tied around both the needle and the pulmonary trunk. Second, there may be significant variation to how tightly the knot is tied making it difficult to reproduce a certain degree of banding. This will lead to a variation in banding diameter and thereby a larger dispersion. Finally, the knot may come loose over time.
One study applies a half-closed tantalum clip around the pulmonary trunk10. They compressed the clip around the pulmonary trunk to an inner area of 1.10 mm2 and compared it to rats subjected to banding with a suture using an 18 G needle. Overall, banding with the clip was associated with less peri-surgical complications and data variance.
Based on the principles described by Schou et al.11, we further developed and characterized the pulmonary trunk banding (PTB) model of RV hypertrophy and failure. Here, we present our experience using this model based on results from previous studies12,13. For this model, a titanium clip is compressed around the pulmonary trunk to an exact preset inner diameter, which may be adjusted in order to induce distinct RV failure phenotypes.
All rats were treated according to Danish national guidelines described in the Danish law on animal experiments and Ministerial order on animal experiments. All experiments were approved by the Institutional Ethics Review Board and conducted in accordance with the Danish law for animal research (authorization number 2012-15-2934-00384, Danish Ministry of Justice).
1. Adjustment of the Ligating Clip Applier
NOTE: The banding of the pulmonary trunk is performed with a modified open ligating clip applier with an angled jaw. The applier is modified with an adjustable stop mechanism to stop the compression when the jaws reach an exact distance from each other. When a small titanium ligating clip is compressed with the modified applier, a lumen persists between the legs of the clip with a specific diameter according to the adjustment of the stop mechanism (Figure 1).
Figure 1: The PTB procedure. (A) The surgical instruments used for the PTB procedure including the ligating clip applier (blue arrow). (B) The adjustable stop mechanism of the ligating clip applier. Turning the cogwheel (blue arrow) will adjust the position of the pin (yellow arrow), which stops the closing of the applier when the jaws reach a certain distance from each other. The distance corresponds to twice the thickness of the legs of the clip plus the inner diameter of the clip, when the clip is compressed, and can be calibrated by using for example a needle with a known outer diameter. (C) The applier compresses a titanium clip to an exact inner diameter pre-specified by adjustment of the applier. (D) The inner diameter of the compressed clip can be adjusted in order to induce different severities of RV hypertrophy and failure. For the data presented, an inner diameter of 1.0 mm was used to induce mild RV hypertrophy, an inner diameter of 0.6 mm was used to induce moderate RV failure, and an inner diameter of 0.5 mm was used to induce severe RV failure. (E) The clip after application around the pulmonary trunk. Please click here to view a larger version of this figure.
2. Preparation of the Rat
NOTE: Other regimens of analgesics may be applied.
3. Isolation of the Pulmonary Trunk
4. Application of the Clip
5. Closing of the Thorax
6. Sham Surgery
Using the described PTB procedure in previous studies from our group12,13, we induced RV hypertrophy (PTB mild) by banding with a 1.0 mm clip, a moderate degree of RV failure (PTB moderate) by banding with a 0.6 mm clip and a severe degree of RV failure (PTB severe) by banding with a 0.5 mm clip. The rats subjected to the severe banding developed extra-cardiac manifestations of RV failure including liver failure and ascites (
We describe an accessible and highly reproducible method of pulmonary trunk banding using a modified ligating clip applier to compress a titanium clip around the pulmonary trunk. By adjusting the applier to compress the clip to different inner diameters, distinct phenotypes of RV hypertrophy and failure can be induced including severe RV failure with extra-cardiac manifestation of decompensation.
Although simple, the protocol contains a few critical steps. Importantly, the rats cannot be too b...
The authors have nothing to disclose
This work was supported by The Danish Council for Independent Research [11e108410], the Danish Heart Foundation [12e04-R90-A3852 and 12e04-R90-A3907], and The Novo Nordisk Foundation [NNF16OC0023244].
Name | Company | Catalog Number | Comments |
17 G IV Venflon Cannula | Becton Dickinson, US | 393228 | Distal 2 mm of the needle have been cut off |
1 mL syringe + 26 G needle | Becton Dickinson, US | 303172 & 303800 | |
4-0 absorbable multifilament suture | Covidien, US | GL-46-MG | Polysorb, violet, 5x18" |
4-0 multifilament ligature | Covidien, US | LL-221 | Polysorb, violet, 98" |
Buprenorphine | Indivior UK Limited | Local procurement, Temgesic 0.3 mg/mL | |
Carprofene | ScanVet, DK | 27693 | Norodyl 50 mg/mL |
Chlorhexidine | Faaborg Pharma, DK | Local procurement | |
Contractor | Aesculap, Germany | BV010R | Blunt, self retaining, 70 mm |
Ear Hooklet | Lawton, Germany | 66-0261 | Small, 14 cm, tip modified to an angle of 85° |
Eye gel | Decra, UK | Lubrithal, Local procurement | |
Forceps, Delicate Tissue | Lawton, Germany | 09-0020 | |
Forceps, Dissecting | Lawton, Germany | 09-0013 | 1 regular, 1 with tip modified to an angle of 100° |
Gas Anesthesia System | Penlon Limited, UK | SD0217SL | Sigma Delta Vaporizer |
Hair trimmer | Oster | 76998-320-051 | |
Horizon Open Ligating Clip Applier | Teleflex, US | 137085 | Modified with adjustable stop mechanism |
Horizon Titanium Clips | Teleflex, US | 001200 | Small |
Induction chamber | N/A | ||
Iris Scissor | Lawton, Germany | 05-1450 | |
Iris Scissor | Aesculap, Germany | BC060R | |
Mechanical ventilator | Ugo Basile, Italy | 7025 | |
Microscissor | Lawton, Germany | 63-1406 | |
Microscope | Carl Zeiss, Germany | 303294-9903 | |
Needle Holder | Lawton, Germany | 08-0011 | TITEGRIP |
Pean | Lawton, Germany | 06-0100 | Halsted-Mosquito, straight |
Pro-Optha | Lohmann & Rauscher, Germany | 16515 | Tampon |
Saline 9 mg/mL | Fresenius Kabi, DK | 209319 | |
Sevoflurane | AbbVie, US | Sevorane, Local procurement | |
Surgical hook | Lawton, Germany | 51-0665 | Cushing, 19 cm, tip modified to an angle of 90° |
Surgical Tape | 3M, US | 1530-0 | Micropore |
Temperature Controller | CMA Microdialysis; Sweden | 8003760 | CMA 450 |
Weighing machine | VWR, US | ||
Wistar rat weanlings | Janvier Labs, France | RjHan:WI, 100-120 g |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone