JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a surgical method to induce right ventricular hypertrophy and failure in rats.

Abstract

Right ventricular (RV) failure induced by sustained pressure overload is a major contributor to morbidity and mortality in several cardiopulmonary disorders. Reliable and reproducible animal models of RV failure are therefore warranted in order to investigate disease mechanisms and effects of potential therapeutic strategies. Banding of the pulmonary trunk is a common method to induce isolated RV hypertrophy but in general, previously described models have not succeeded in creating a stable model of RV hypertrophy and failure.

We present a rat model of pressure overload induced RV hypertrophy caused by pulmonary trunk banding (PTB) that enables different phenotypes of RV hypertrophy with and without RV failure. We use a modified ligating clip applier to compress a titanium clip around the pulmonary trunk to a pre-set inner diameter. We use different clip diameters to induce different stages of disease progression from mild RV hypertrophy to decompensated RV failure.

RV hypertrophy develops consistently in rats subjected to the PTB procedure and depending on the diameter of the applied banding clip, we can accurately reproduce different disease severities ranging from compensated hypertrophy to severe decompensated RV failure with extra-cardiac manifestations.

The presented PTB model is a valid and robust model of pressure overload induced RV hypertrophy and failure that has several advantages to other banding models including high reproducibility and the possibility of inducing severe and decompensated RV failure.

Introduction

The right ventricle (RV) can adapt to a persistent pressure overload. In time, however, adaptive mechanisms fail to sustain cardiac output, the RV dilates and eventually the RV fails. RV function is the main prognostic factor of several cardiopulmonary disorders including pulmonary arterial hypertension (PAH), thromboembolic pulmonary hypertension (CTEPH), and various forms of congenital heart disease with a pressure (or volume) overload of the RV. Despite intense treatment, RV failure remains a predominant cause of death in these conditions.

As a consequence of the unique properties1,2 and embryological development3 of the RV, knowledge derived from left heart failure cannot simply be extrapolated to right heart failure. Animal models of right heart failure are therefore needed in order to investigate the mechanisms of RV failure and potential pharmacological treatment strategies.

There are experimental models of pulmonary hypertension induced by SU5416 combined with hypoxia (SuHx)4 or monocrotaline (MCT)5, which induce RV failure secondary to disease in the pulmonary vasculature. These models are used to evaluate therapeutic effects of drugs that target the pulmonary vasculature. Both the SuHx and the MCT model are non-fixed afterload models of RV failure. Consequently, it is not possible to conclude if an improvement in RV function after an intervention is secondary to afterload reducing pulmonary vascular effects or if it is caused by direct effects on the RV. In addition, the MCT model has several extra-cardiac effects.

In experimental pulmonary trunk banding models, the afterload of the RV is fixed due to a mechanical constriction of the pulmonary trunk. This allows for the investigation of direct cardiac effects of an intervention on the RV independent from any pulmonary vascular effects6,7,8,9. Usually, the banding is performed by placing a needle along the pulmonary trunk. Then a ligature is placed around the needle and the pulmonary trunk and tied with a knot, and the needle is removed leaving the suture around the pulmonary trunk. Depending on the gauge of the needle, different degrees of constrictions can be applied, but despite this approach being widely used, it has some disadvantages. First, the diameter of the banding is not exactly the same as the outer diameter of the needle as the ligature is tied around both the needle and the pulmonary trunk. Second, there may be significant variation to how tightly the knot is tied making it difficult to reproduce a certain degree of banding. This will lead to a variation in banding diameter and thereby a larger dispersion. Finally, the knot may come loose over time.

One study applies a half-closed tantalum clip around the pulmonary trunk10. They compressed the clip around the pulmonary trunk to an inner area of 1.10 mm2 and compared it to rats subjected to banding with a suture using an 18 G needle. Overall, banding with the clip was associated with less peri-surgical complications and data variance.

Based on the principles described by Schou et al.11, we further developed and characterized the pulmonary trunk banding (PTB) model of RV hypertrophy and failure. Here, we present our experience using this model based on results from previous studies12,13. For this model, a titanium clip is compressed around the pulmonary trunk to an exact preset inner diameter, which may be adjusted in order to induce distinct RV failure phenotypes.

Protocol

All rats were treated according to Danish national guidelines described in the Danish law on animal experiments and Ministerial order on animal experiments. All experiments were approved by the Institutional Ethics Review Board and conducted in accordance with the Danish law for animal research (authorization number 2012-15-2934-00384, Danish Ministry of Justice).

1. Adjustment of the Ligating Clip Applier

NOTE: The banding of the pulmonary trunk is performed with a modified open ligating clip applier with an angled jaw. The applier is modified with an adjustable stop mechanism to stop the compression when the jaws reach an exact distance from each other. When a small titanium ligating clip is compressed with the modified applier, a lumen persists between the legs of the clip with a specific diameter according to the adjustment of the stop mechanism (Figure 1).

  1. Choose the diameter of the desired banding, e.g., 0.6 mm.
  2. Adjust the ligating clip applier until the distance between the jaws is 1.0 mm when fully compressed. This leaves a lumen of 0.6 mm as the two clip legs have a thickness of 0.2 mm each.

figure-protocol-1350
Figure 1: The PTB procedure. (A) The surgical instruments used for the PTB procedure including the ligating clip applier (blue arrow). (B) The adjustable stop mechanism of the ligating clip applier. Turning the cogwheel (blue arrow) will adjust the position of the pin (yellow arrow), which stops the closing of the applier when the jaws reach a certain distance from each other. The distance corresponds to twice the thickness of the legs of the clip plus the inner diameter of the clip, when the clip is compressed, and can be calibrated by using for example a needle with a known outer diameter. (C) The applier compresses a titanium clip to an exact inner diameter pre-specified by adjustment of the applier. (D) The inner diameter of the compressed clip can be adjusted in order to induce different severities of RV hypertrophy and failure. For the data presented, an inner diameter of 1.0 mm was used to induce mild RV hypertrophy, an inner diameter of 0.6 mm was used to induce moderate RV failure, and an inner diameter of 0.5 mm was used to induce severe RV failure. (E) The clip after application around the pulmonary trunk. Please click here to view a larger version of this figure.

2. Preparation of the Rat

NOTE: Other regimens of analgesics may be applied.

  1. Use Wistar rat weanlings weighing approximately 100–120 g. In order to maintain body temperature during the surgery, use a covered heating pad.
  2. For surgery, use a mechanical ventilator set to a tidal volume of approximately 1.75 mL and respiratory rate of 75 per min.
  3. Anaesthetize the rat with sevoflurane (7% mix in 1.5 L of O2) in an induction chamber for 5 minutes. Intubate the rat using a 17 G IV cannula, where the distal 2 mm of the needle have been cut off in order for the soft catheter to cover the tip. Remove the needle and connect the cannula to the ventilator.
  4. Place the rat on its back on the heating pad. Make sure that the intubation is correct by observing the movements of the thorax. These should be without side differences and in pace with the ventilator.
    NOTE: Absence of movements of the thorax, abdominal contractions and inflation of the stomach in the upper left abdomen are signs of a misplaced tube. Remove the cannula, put the rat back in the induction chamber and re-intubate.
  5. After correct intubation, reduce the sevoflurane to maintenance concentration (3.5% mix in O2, 1.5 L/min) and fix the paws of the rat to the heating pad.
  6. Confirm prober anesthetization by checking withdrawal reflexes of the extremities using a forceps to squeeze the paws of the rat.
  7. Inject the rats with buprenorphine (0.1 mg/kg subcutaneously (s.c.)) and carprofene (5 mg/kg s.c.) to relieve post-operative pain.
  8. Shave the chest and disinfect with chlorhexidine.

3. Isolation of the Pulmonary Trunk

  1. With a pair of scissors, make a 2 cm incision in the skin along the middle part of the sternum. Identify the major pectoral muscle and cut its sternal attachment. Identify the 2nd, 3rd, and 4th costa below.
  2. Optionally, grab the 2nd costa with a fixation forceps, put a suture (4-0, multifilament, absorbable) around the 2nd costa from the 1st intercostal space to the lower medial part of the 2nd intercostal space. Tie a firm knot in order to ligate the anterior thoracic artery.
    NOTE: This can be useful if bleeding from the anterior thoracic artery is a recurrent issue.
  3. Cut the 4th, 3rd, and 2nd costa close to the sternum with a pair of scissors and carefully dissect the intercostal muscles until a complete left thoracotomy has been performed. If any bleeding from the anterior thoracic artery occurs, compress with a pean and ligate the artery.
  4. Insert a retractor between the sternum and the costae and open it to get a good operating field. At the top of the field is the thymus covering the aorta and the pulmonary trunk. Carefully lift the thymus using a pean and flip it upwards in order to expose the aorta and the pulmonary trunk below.
  5. Guide the tip of a small surgical hooklet with a 85° angle through the transverse pericardial sinus located behind the left atrial appendage. Pull it halfway back through the sinus and guide the tip of the ear hook upwards until it appears between the ascending aorta and the pulmonary trunk.
    1. Remove any connective tissue covering the tip with an iris scissor in order to separate the pulmonary trunk from the ascending aorta.
    2. Repeat the step with a larger hook (optional).
  6. Guide an angled muscle forceps around the pulmonary trunk through the passage made with the hook(s). Grab the end of an approximately 10 cm ligature (4-0, multifilament) and pull half of the ligature back through the passage. Now the pulmonary trunk is separated from the ascending aorta and can be controlled by the ligature around it.

4. Application of the Clip

  1. Load the adjusted ligating clip applier with a clip. Carefully guide one of the jaws and one leg of the clip though the passage around the pulmonary trunk. Use the ligature to gently pull the pulmonary trunk upwards and into the fork of the clip.
  2. When the pulmonary trunk is in the fork of the clip and the two tips of the clip legs are free of any connective tissue, compress the clip with the applier to apply the banding.
  3. Observe how the RV immediately dilates in response to the banding and remove the ligature.

5. Closing of the Thorax

  1. Remove the pean from the thymus and reposition the thymus to its natural position. Remove the retractor.
  2. Close the thorax in three layers: the intercostal layer, the major pectoral muscle, and the skin with suture (4-0, multifilament, absorbable). Inject 2 mL of saline s.c. to replace fluid lost during surgery.
  3. Turn the sevoflurane off and and keep the rat on the ventilator (1.5 L of O2) until it starts breathing spontaneously. Then, extubate the rat.
  4. Treat the rats with buprenorphine in the drinking water for the following three days14 or apply a similar analgesic protocol. After three days, the rats have recovered and are without discomfort.
  5. In the following weeks, the well-being of the rats and possible adverse effects should be evaluated on a daily basis. The healing of the wound from the thoracotomy should receive special attention during the first week in order to detect any signs of infection or insufficiency of the cicatrices. If the rats show signs of failure to thrive including bristly fur, impaired mobility, respiratory problems, and weight loss, they should be monitored closely and euthanized if they lose more than 20% of their body weight or develop fulminant respiratory insufficiency. 

6. Sham Surgery

  1. Perform a sham surgery by following all of the steps above except for the application of the clip (step 4).

Results

Using the described PTB procedure in previous studies from our group12,13, we induced RV hypertrophy (PTB mild) by banding with a 1.0 mm clip, a moderate degree of RV failure (PTB moderate) by banding with a 0.6 mm clip and a severe degree of RV failure (PTB severe) by banding with a 0.5 mm clip. The rats subjected to the severe banding developed extra-cardiac manifestations of RV failure including liver failure and ascites (

Discussion

We describe an accessible and highly reproducible method of pulmonary trunk banding using a modified ligating clip applier to compress a titanium clip around the pulmonary trunk. By adjusting the applier to compress the clip to different inner diameters, distinct phenotypes of RV hypertrophy and failure can be induced including severe RV failure with extra-cardiac manifestation of decompensation.

Although simple, the protocol contains a few critical steps. Importantly, the rats cannot be too b...

Disclosures

The authors have nothing to disclose

Acknowledgements

This work was supported by The Danish Council for Independent Research [11e108410], the Danish Heart Foundation [12e04-R90-A3852 and 12e04-R90-A3907], and The Novo Nordisk Foundation [NNF16OC0023244].

Materials

NameCompanyCatalog NumberComments
17 G IV Venflon CannulaBecton Dickinson, US393228Distal 2 mm of the needle have been cut off
1 mL syringe + 26 G needleBecton Dickinson, US303172 & 303800
4-0 absorbable multifilament sutureCovidien, USGL-46-MGPolysorb, violet, 5x18"
4-0 multifilament ligatureCovidien, USLL-221Polysorb, violet, 98"
BuprenorphineIndivior UK LimitedLocal procurement, Temgesic 0.3 mg/mL
CarprofeneScanVet, DK27693Norodyl 50 mg/mL
ChlorhexidineFaaborg Pharma, DKLocal procurement
ContractorAesculap, GermanyBV010RBlunt, self retaining, 70 mm
Ear HookletLawton, Germany66-0261Small, 14 cm, tip modified to an angle of 85°
Eye gelDecra, UKLubrithal, Local procurement
Forceps, Delicate TissueLawton, Germany09-0020
Forceps, DissectingLawton, Germany09-00131 regular, 1 with tip modified to an angle of 100°
Gas Anesthesia SystemPenlon Limited, UKSD0217SLSigma Delta Vaporizer
Hair trimmerOster76998-320-051
Horizon Open Ligating Clip ApplierTeleflex, US137085Modified with adjustable stop mechanism
Horizon Titanium ClipsTeleflex, US001200Small
Induction chamberN/A
Iris ScissorLawton, Germany05-1450
Iris ScissorAesculap, GermanyBC060R
Mechanical ventilatorUgo Basile, Italy7025
MicroscissorLawton, Germany63-1406
MicroscopeCarl Zeiss, Germany303294-9903
Needle HolderLawton, Germany08-0011TITEGRIP
PeanLawton, Germany06-0100Halsted-Mosquito, straight
Pro-OpthaLohmann & Rauscher, Germany16515Tampon
Saline 9 mg/mLFresenius Kabi, DK209319
SevofluraneAbbVie, USSevorane, Local procurement
Surgical hookLawton, Germany51-0665Cushing, 19 cm, tip modified to an angle of 90°
Surgical Tape3M, US1530-0Micropore
Temperature ControllerCMA Microdialysis; Sweden8003760CMA 450
Weighing machineVWR, US
Wistar rat weanlingsJanvier Labs, FranceRjHan:WI, 100-120 g

References

  1. Kaufman, B. D., et al. Genomic profiling of left and right ventricular hypertrophy in congenital heart disease. Journal of Cardiac Failure. 14 (9), 760-767 (2008).
  2. Zungu-Edmondson, M., Suzuki, Y. J. Differential stress response mechanisms in right and left ventricles. Journal of Rare Diseases Research & Treatment. 1 (2), 39-45 (2016).
  3. Zaffran, S., Kelly, R. G., Meilhac, S. M., Buckingham, M. E., Brown, N. A. Right ventricular myocardium derives from the anterior heart field. Circulation Research. 95 (3), 261-268 (2004).
  4. de Raaf, M. A., et al. SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. The European Respiratory Journal. 44 (1), 160-168 (2014).
  5. Gomez-Arroyo, J. G., et al. The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology-Lung Cellular and Molecular Physiology. 302 (4), L363-L369 (2012).
  6. Bogaard, H. J., et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 120 (20), 1951-1960 (2009).
  7. Borgdorff, M. A., et al. Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. European Journal of Heart Failure. 14 (9), 1067-1074 (2012).
  8. Mendes-Ferreira, P., et al. Distinct right ventricle remodeling in response to pressure overload in the rat. American Journal of Physiology-Heart and Circulatory Physiology. 311 (1), H85-H95 (2016).
  9. Piao, L., et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. Journal of Molecular Medicine. 88 (1), 47-60 (2010).
  10. Hirata, M., et al. Novel Model of Pulmonary Artery Banding Leading to Right Heart Failure in Rats. BioMed Research International. 2015, 753210 (2015).
  11. Schou, U. K., Peters, C. D., Kim, S. W., Frøkiær, J., Nielsen, S. Characterization of a rat model of right-sided heart failure induced by pulmonary trunk banding. Journal of Experimental Animal Science. 43 (4), 237 (2007).
  12. Andersen, S., et al. Effects of bisoprolol and losartan treatment in the hypertrophic and failing right heart. Journal of Cardiac Failure. 20 (11), 864-873 (2014).
  13. Holmboe, S., et al. Inotropic Effects of Prostacyclins on the Right Ventricle Are Abolished in Isolated Rat Hearts With Right-Ventricular Hypertrophy and Failure. Journal of Cardiovascular Pharmacology. 69 (1), 1-12 (2017).
  14. Jessen, L., Christensen, S., Bjerrum, O. J. The antinociceptive efficacy of buprenorphine administered through the drinking water of rats. Lab Anim. 41 (2), 185-196 (2007).
  15. Andersen, A., Povlsen, J. A., Botker, H. E., Nielsen-Kudsk, J. E. Right ventricular hypertrophy and failure abolish cardioprotection by ischaemic pre-conditioning. European Journal of Heart Failure. 15 (11), 1208-1214 (2013).
  16. Fujimoto, Y., et al. Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats. PloS one. 11 (2), e0148666 (2016).
  17. Marques, C., et al. High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte. 5 (1), 11-21 (2016).
  18. Osadchii, O., Norton, G., Deftereos, D., Woodiwiss, A. Rat strain-related differences in myocardial adrenergic tone and the impact on cardiac fibrosis, adrenergic responsiveness and myocardial structure and function. Pharmacological Research. 55 (4), 287-294 (2007).
  19. Brower, M., Grace, M., Kotz, C. M., Koya, V. Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources. Laboratory Animal Research. 31 (4), 166-173 (2015).
  20. Wang, S., et al. A neonatal rat model of increased right ventricular afterload by pulmonary artery banding. The Journal of Thoracic and Cardiovascular Surgery. 154 (5), 1734-1739 (2017).
  21. Borgdorff, M. A., et al. Distinct loading conditions reveal various patterns of right ventricular adaptation. American Journal of Physiology-Heart and Circulatory Physiology. 305 (3), H354-H364 (2013).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Pulmonary Trunk BandingRight Ventricular HypertrophyRight Ventricular FailurePressure OverloadAfterload IncreasePulmonary VasodilationRat ModelThoracotomyPulmonary TrunkAortaLigature

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved