Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we describe a minimally invasive syngeneic orthotopic transplantation model of mouse lung adenocarcinoma cells as a time- and cost-reducing model to study non-small cell lung cancer.
The use of mouse models is indispensable for studying the pathophysiology of various diseases. With respect to lung cancer, several models are available, including genetically engineered models as well as transplantation models. However, genetically engineered mouse models are time-consuming and expensive, whereas some orthotopic transplantation models are difficult to reproduce. Here, a non-invasive intratracheal delivery method of lung tumor cells as an alternative orthotopic transplantation model is described. The use of mouse lung adenocarcinoma cells and syngeneic graft recipients allows studying tumorigenesis under the presence of a fully active immune system. Furthermore, genetic manipulations of tumor cells before transplantation makes this model an attractive time-saving approach to study the impact of genetic factors on tumor growth and tumor cell gene expression profiles under physiological conditions. Using this model, we show that lung adenocarcinoma cells express increased levels of the T-cell suppressor programmed death-ligand 1 (PD-L1) when grown in their natural environment as compared to cultivation in vitro.
Lung cancer is still by far the biggest cancer-related killer in both men and women1. Indeed, according to the American Cancer Society, every year more people die of lung cancer than of breast, prostate, and colon cancer together1. Until recently, the majority of patients suffering from non-small cell lung cancer (NSCLC), which is the most abundant subtype of lung cancer, were treated with platinum-based chemotherapy in a first-line setting, mostly with the addition of angiogenesis inhibitors2. Only a subset of patients harbors oncogenic mutations in the epidermal growth factor receptor (EGFR), in anaplastic lymphoma kinase (ALK), or in ROS1, and can be treated with available targeting drugs3,4. With the advent of immune checkpoint inhibitors, new hope for lung cancer patients has arisen, although until now, only 20–40% of patients respond to immune therapy5. Hence, further research is required to improve this outcome by fine-tuning immune checkpoint therapy and investigating combinatory treatment options.
To study lung cancer, a vast array of preclinical models are available, including spontaneous models triggered by chemicals and carcinogens and genetically engineered mouse models (GEMM) where autochthonous tumors arise following the conditional activation of oncogenes and/or the inactivation of tumor suppressor genes6,7,8. These models are of particular value to investigate fundamental processes in lung tumor development, but they also require extensive mice breeding, and experiments are time-consuming. Therefore, many studies evaluating potential inhibitors take advantage of subcutaneous (patient-derived) xenograft models where human lung cancer cell lines are subcutaneously injected into immunodeficient mice9.
In these models, the micromilieu of tumors is not represented accordingly; hence, researchers also use orthotopic transplantation models, where tumor cells are injected intravenously, intrabronchially, or directly into the lung parenchyma10,11,12,13,14,15,16,17,18,19,20. Some of these methods are technically challenging, difficult to be reproduced, and require intensive training of the researchers.21 Here we adapted a non-invasive orthotopic, intratracheal transplantation method in immunocompetent mice, where tumors develop within 3-5 weeks and exhibit significant similarities to human tumors, to induce the expression of the T-cell suppressor Programmed death-ligand 1 (PD-L1) on tumor cells.11,12,20 The use of mouse tumor cells derived from GEMM models and syngeneic recipient mice allows proper studying of the tumor microenvironment including immune cells. Furthermore, gene editing tools like CRISPR/Cas9 technology22 can be used in vitro before transplantation which facilitates the investigation of the impact of genetic factors in lung tumorigenesis.
All experimental protocols as outlined below follow ethical guidelines and were approved by the Austrian Federal Ministry of Science, Research and Economy.
NOTE: The protocol here describes an orthotopic transplantation model of mouse lung adenocarcinoma cells into syngeneic recipients. Cells may be isolated from tumor-bearing lungs of KrasLSL-G12D:p53fl/fl (KP) mice7,18, if available in-house, and transplanted into mice of the same background and sex. If cells were provided from other research groups and the exact background remains unknown, we recommend the use of the F1 generation of a cross between C57BL/6 and 129S mice as transplant recipients to guarantee maximal tolerance.
1. Cell Preparation
2. Orthotopic Transplantation via Intratracheal Delivery
3. Lung Preparation for Flow Cytometry
We used the orthotopic transplantation model via intratracheal tumor cell delivery to test whether the tumor microenvironment stimulates PD-L1 expression. Therefore, we isolated mouse lung AC cells from the autochthonous KP model (KP cells), 10 weeks following tumor induction via Cre-recombinase-expressing adenovirus (Ad.Cre) delivery24. Subsequently, we labeled the lung AC cells using a green fluorescent protein (GFP)-expressing lentivirus25
To study lung physiologic and pathologic events in the lung, invasive and non-invasive intratracheal intubation methods for the instillation of various reagents are widely used26,27,28,29,30,31,32. In the cancer field, researchers use the intratracheal (and intranasal) instillation of Cre-re...
The authors have nothing to disclose.
The authors would like to thank Safia Zahma for her help with the preparation of tissue sections.
Name | Company | Catalog Number | Comments |
mouse lung adenocarcinoma cell line | isolated in house | ||
C57Bl/6 mice | F1 of the cross of the two backgrounds may be used (8-12 weeks) | ||
129S mice | |||
RPMI 1640 Medium | Life Technologies | 11544446 | |
Fetal Calf Serum | Life Technologies | 11573397 | |
Penicillin/Streptomycin Solution | Life Technologies | 11548876 | |
L-Glutamine | Life Technologies | 11539876 | |
Trypsin, 0.25% (1x) with EDTA | Life Technologies | 11560626 | |
UltraPure 0.5 M EDTA, pH 8.0 | Thermo Fisher Scientific | 15575020 | |
Ketasol (100 mg/mL Ketamine) | Ogris Pharma | 8-00173 | |
Xylasol (20 mg/mL Xylazine) | Ogris Pharma | 8-00178 | |
BD Insyste (22 GA 1.00 IN) | BD | 381223 | |
Blunt forceps | Roboz | RS8260 | |
Leica CLS150 LED | Leica | 30250004 | Fibre Light Illuminator |
Student Iris Scissors | Fine Science Tools | 91460-11 | |
DNase I (RNase-Free) | New England Biolabs | M0303S | |
Collagenase Type I | Life Technologies | 17100017 | |
ACK Lysing Buffer | Lonza | 10-548E | |
CD274 (PD-L1, B7-H1) Monoclonal Antibody (MIH5), PE-Cyanine7 | eBioscience | 25-5982-82 | |
Rat IgG2a kappa Isotype Control, PE-Cyanine7 | eBioscience | 25-4321-82 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone