Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol provides a method to establish humanized mice (hu-NSG) via intrahepatic injection of human hematopoietic stem cells into radiation-conditioned neonatal NSG mice. The hu-NSG mouse is susceptible to HIV infection and combinatorial antiretroviral therapy (cART) and serves as a suitable pathophysiological model for HIV replication and latency investigations.
Ethical regulations and technical challenges for research in human pathology, immunology, and therapeutic development have placed small animal models in high demand. With a close genetic and behavioral resemblance to humans, small animals such as the mouse are good candidates for human disease models, through which human-like symptoms and responses can be recapitulated. Further, the mouse genetic background can be altered to accommodate diverse demands. The NOD/SCID/IL2rγnull (NSG) mouse is one of the most widely used immunocompromised mouse strains; it allows engraftment with human hematopoietic stem cells and/or human tissues and the subsequent development of a functional human immune system. This is a critical milestone in understanding the prognosis and pathophysiology of human-specific diseases such as HIV/AIDS and aiding the search for a cure. Herein, we report a detailed protocol for generating a humanized NSG mouse model (hu-NSG) by hematopoietic stem cell transplantation into a radiation-conditioned neonatal NSG mouse. The hu-NSG mouse model shows multi-lineage development of transplanted human stem cells and susceptibility to HIV-1 viral infection. It also recapitulates key biological characteristics in response to combinatorial antiretroviral therapy (cART).
Because establishing suitable animal models for human diseases is key to finding a cure, appropriate animals models have long been pursued and improved over time. Multiple strains of immunocompromised murine models have been developed that permit the engraftment of human cells and/or tissues and the subsequent execution of humanized functions1,2. Such humanized mouse models are critical for investigations of human-specific diseases3,4,5.
Acquired immune deficiency syndrome (AIDS) resulting from infection with human immunodeficiency virus (HIV) is one example. Prior to the establishment of humanized mouse models, ethical and technical limitations confined HIV/AIDS preclinical animal studies to non-human primates3. However, the high expenses and requirements for specialized care for such animal hinder HIV/AIDS studies in typical academic settings. HIV primarily infects human CD4+ T-cells and impacts the development and immune responses of other human immune cells such as B-cells, macrophages, and dendritic cells6; therefore, small animal models transplanted with functional human immune systems are in high demand.
A breakthrough came in 1988, when CB17-scid mice with a Prkdcscid mutation were developed and showed successful engraftment of the human immune system1. The Prkdcscid mutation results in defective T- and B-cell functions and an ablated adaptive immune system in mice, thereby enabling the engraftment of human peripheral blood mononuclear cells (PBMCs), hematopoietic stem cells (HSCs), and fetal hematopoietic tissues7,8. Nonetheless, low levels of engraftment are frequently observed in this model; possible causes are 1) residual innate immune activity modulated via natural killer (NK)-cells and 2) the late-stage development of mouse T- and B-cells (leakiness)5. The subsequent development of the non-obese diabetic (NOD)-scid mouse model achieved dramatic down-regulation of NK-cell activity; thus, it is able to support a higher level and more sustainable engraftment of human immune system components9. To further suppress or impede development of innate immunity, mouse models bearing truncation or total knockout of the interleukin-2 receptor γ-chain (Il2rg) in the (NOD)-scid background were established. Il2rg, also known as common cytokine-receptor γ-chain, is an indispensable component of various cytokine receptors10,11,12,13. Strains such as NOD.Cg-PrkdcscidIl2rgtm1Wji (NSG) and NODShi.Cg-PrkdcscidIl2rgtm1Sug (NOG) present robust disruption of mouse cytokine signaling and complete ablation of NK-cell development, in addition to severe impairment of adaptive immunity14,15,16.
Three humanized mouse models bearing a scid mutation and Il2rg knockout are frequently employed in HIV/AIDS research: the BLT (Bone marrow/Liver/Thymus) model, the PBL (Peripheral Blood Leukocyte) model, and the SRC (SCID Repopulating Cell) model3. The BLT model is created via surgical transplantation of human fetal liver and thymus under the mouse kidney capsule accompanied with intravenous injection of fetal liver HSCs3,17,18. The BLT mouse model offers high engraftment efficacy, development of human hematopoietic cells in all lineages, and establishment of a strong human immune system; additionally, T-cells are educated in a human autologous thymus and exhibit HLA-restricted immune responses4,5,17,19. However, the requirement for surgical procedures remains the major drawback of the BLT model. The PBL mouse model is established by intravenous injection with human peripheral lymphoid cells. The PBL model offers convenience and yields successful T-cell engraftment, but its application is limited due to insufficient B-cell and myeloid cell engraftment, low engraftment levels overall, and the onset of severe graft-versus-host disease (GVHD)3,20. The SRC mouse model is established through injection of human HSCs into newborn or young adult SCID mice. It exhibits average engraftment efficiency above 25% (assessed as peripheral blood CD45 percentage) and supports the multiple-lineage development of injected HSCs and the elaboration of an innate human immune system. However, the limitation of the SRC model is that the T-cell response is mouse H2-restricted instead of human HLA-restricted14,21.
The SRC mouse model is considered a facile and reliable model for preclinical HIV/AIDS small animal studies, exemplified by the consistent engraftment of a human immune system and successful hematopoietic development. We previously reported the establishment of a NSG Hu-SRC-SCID (hu-NSG) mouse model and described its application in HIV replication and latency studies22,23,24. This hu-NSG mouse model exhibits high levels of bone marrow homing, susceptibility to HIV infection, and recapitulation of HIV infection and pathogenesis. Additionally, the hu-NSG mouse model responds appropriately to combinatorial antiretroviral therapy (cART) and recapitulates plasma viral rebound upon cART withdrawal, confirming the establishment of an HIV latency reservoir25,26,27. This HIV latency reservoir is further substantiated by the production of replication-competent HIV viruses ex vivo induced by human resting CD4+ T-cells isolated from infected and cART-treated hu-NSG mice.
Herein, we describe the detailed protocol for establishment of the hu-NSG mouse model from neonatal NSG mice, including procedures related to HIV infection and cART treatment for latency development. We expect this protocol to offer a new set of approaches in HIV animal studies regarding HIV virology, latency, and treatment.
All animal care and procedures have been performed according to protocols reviewed and approved by the City of Hope Institutional Animal Care and Use Committee (IACUC) held by the principal investigator of this study (Dr. John Rossi, IACUC #12034). Human fetal liver tissue was obtained from Advanced Bioscience Resources (Alameda, CA), a nonprofit organization, in accordance with federal and state regulations. The vendor has its own Institutional Review Board (IRB) and is compliant with human subject protection requirements. Human PBMCs are isolated from discarded peripheral blood specimens from anonymous healthy donors from City of Hope Blood Donor Center (Duarte, CA), with no identification regarding age, race, gender, or ethnicity. IRB#/REF#: 97071/075546
1. General Aseptic Practice
2. Handling HIV Virus, Infected Rodents, and Virus-containing Blood/Tissue Samples
CAUTION: HIV is a class 3 human pathogen; the handling rules must be followed exactly.
3. Isolation of Hematopoietic Stem Cells
4. Intrahepatic Injection of Human CD34+ HSCs in Neonatal NSG Mice
NOTE: Neonatal NSG mice 2-3 days from birth are most suitable for this procedure, as they are strong enough to endure irradiation at half-lethal dose, while young enough to have totally impaired immune systems. No anesthesia is required for the HSC injection.
5. Engraftment Validation Through Retro-Orbital Bleeding and Flow Cytometry Analysis
6. Analysis of HIV Infection of hu-NSG Mice and Plasma Viral Load Using qRT-PCR
7. Oral Administration of cART and Validation of Viral Suppression (optional)
NOTE: This step is optional for investigations regarding HIV prognosis, virology, or infection-related pathophysiology during the acute infection phase. cART treatment of HIV-infected hu-NSG is used to recapitulate HIV latency among human patients receiving cART. Successfully HIV-infected hu-NSG mice are given cART for 4 weeks. The cART regimen consists of tenofovir disoproxil fumarate (TDF; 300 mg/capsule), emtricitabine (FTC; 200 mg/capsule), and raltegravir (RAL; 400 mg/capsule). The dose of cART for treating HIV-infected hu-NSG mice is adjusted according to body surface area (Table 1, Equation 1, Table 2)32.
8. Validation of Viral Rebound upon cART Withdrawal (optional)
NOTE: This step is critical in validating the latency model, as viral rebound upon cART withdrawal provides direct evidence of a latency reservoir. It is also recommended to serve as a control experiment for therapeutic investigations on HIV rebound suppressants.
Flow cytometry analysis is frequently performed to validate the purity of isolated HSCs, evaluate engraftment levels, profile immune responses to viral infection, and survey cART efficacy. A typical antibody panel contains 4-6 individual fluorescently labeled antibodies; thus, a flow cytometer with multiple lasers and a wide selection of filters is crucial for achieving accurate results.
For initial engraftment validation, the h...
Immunocompromised mice engrafted with human cells/tissue present human-like physiological characteristics and are a tremendous value for pathology, pathophysiology, and immunology studies concerning human-specific diseases. Among multiple strains of immunocompromised mice, the NOD.Cg-PrkdcscidIl2rgtm1Wji (NSG) model is the most immunodeficient due to its lack of both innate and adaptive immunity, as well as ablated mouse-specific cytokine signaling3,
The authors disclose no conflicts of interest.
This work was supported by the National Institutes of Health [grant numbers R01AI29329, R01AI42552 and R01HL07470 to J.J.R.] and National Cancer Institute of the National Institutes of Health [grant number P30CA033572 to support City of Hope Integrative Genomics, Analytical Pharmacology, and Analytical Cytometry Cores]. The following reagent was obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: HIV BaL virus.
Name | Company | Catalog Number | Comments |
CD34 MicroBead Kit, human | MiltenyiBiotec | 130-046-703 | |
CryoStor CS2 | Stemcell Technologies | 07932 | |
NOD.Cg-PrkdcscidIl2rgtm1Wji | The Jackson Laboratory | 005557 | Order breeders instead of experimental mice |
IsoFlo | Patterson Veterinary | 07-806-3204 | Order through animal facility, restricted item |
Clidox disinfectant | Fisher Sicentific | NC9189926 | |
Wescodyne | Fisher Sicentific | 19-818-419 | |
Hamilton 80508 syringe/needle | Hamilton | 80508 | Custom made |
Blood collection tube (K2EDTA) | BD Bioscience | 367843 | |
Blood collection tube (Heparin) | BD Bioscience | 365965 | |
Capillary tube (Heparinized) | Fisher Sicentific | 22-362574 | |
Red Blood Cell Lysis Buffer | Sigma Aldrich | 11814389001 | |
QIAamp Viral RNA mini kit | Qiagen | 52906 | |
TaqMan Fast VIrus 1-step Master Mix | Thermofisher | 4444434 | |
HIV-1 P24 ELISA (5 Plate kit) | PerkinElmer | NEK050B001KT | |
IgG from human serum | Sigma Aldrich | I4506-100MG | |
IgG from mouse serum | Sigma Aldrich | I5381-10MG | |
BB515 Mouse Anti-Human CD45 (clone HI30) | BD Biosciences | 564586 | RRID: AB_2732068, LOT 6347696 |
PE-Cy7 Mouse Anti-Human CD3 (Clone SK7) | BD Biosciences | 557851 | RRID: AB_396896, LOT 6021877 |
Pacific Blue Mouse Anti-Human CD4 (Clone RPA-T4) | BD Biosciences | 558116 | RRID: AB_397037, LOT 6224744 |
BUV395 Mouse Anti-Human CD8 (Clone RPA-T8) | BD Biosciences | 563795 | RRID: AB_2722501, LOT 6210668 |
APC-Alexa Fluor 750 Mouse Anti-Human CD14 (TuK4) | ThermoFisher | MHCD1427 | RRID: AB_10373536, LOT 1684947A |
PE Mouse Anti-Human CD19 (SJ25-C1) | ThermoFisher | MHCD1904 | RRID: AB_10373382, LOT 1725304B |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone