Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we present a protocol to improve paraffin sectioning. This method combines cutting and floating using a simple thermostatic chamber to avoid the transfer process required by the conventional method. As a result, the efficiency and the number of intact paraffin sections were greatly improved.
Sectioning of the paraffin-embedded tissue is widely used in histology and pathology. However, it is tedious. To improve this method, several commercial companies have devised complex section transfer systems using fluid water. To simplify this technology, we created a simple method using homemade equipment that combines cutting and floating within a simple thermostatic chamber; therefore, the sections automatically enter the water bath on the water surface. The hippocampus from adult mouse brains, adult mouse kidneys, embryonic mouse brains, and adult zebrafish eyes were cut using both conventional paraffin sectioning and the presented method for comparison. Statistical analysis shows that our improved method saved time and produced higher quality sections. In addition, paraffin sectioning of a whole specimen in a short time is easy for junior operators.
Morphological study is important in the biological research. Although new technology has allowed researchers to observe their targets directly from the whole tissue or organisms1,2,3, cutting the specimen into thin sections, followed by staining, remains the primary method fornot only tissue morphology but also protein targeting directly in the tissue. Light microscopy uses three section types: paraffin, frozen, and semithin. Although cryosectioning is common for protecting tissue antigenicity, and the specimen preparation is simple, the retained tissue morphology is poor and unsuitable for thin sectioning4,5. Paraffin sectioning is the most frequently used method for exhibiting well preserved morphology. As the specimens are dehydrated completely and embedded in wax, the paraffin blocks can be stored indefinitely. In addition, paraffin sectioning produces thin sections that improve biological probe access in further experiments and reduce cell layer overlay in the Z direction.
However, conventional paraffin sectioning is tedious and demands operator skill. Paraffin sections undergo fixation, dehydration, embedding, cutting, and floating. Importantly, transferring section ribbons from the knife holder to the water bath is necessary but difficult for junior operators. Especially in dry air, the section ribbons will twist due to static electricity and are difficult to unfold on the warm water surface. To improve section quality, moistening the exposed tissue surface between microtome blade passes, cooling the wax blocks by immersing them in ice water, or raising the humidity with a humidifier near the microtome are recommended6,7. Newer methods for improving paraffin sectioning include hybrid paraffin embedding, cryosectioning8, and commercial section transfer system assistance9. Although these methods partially improve paraffin sectioning speed and quality, they make sectioning much more cumbersome, and commercial section transfer systems are expensive.
In this protocol, we demonstrate how to create simple, cheap and flexible equipment step by step, which can be connected to the blade holder of a rotary microtome. This equipment is comprised of a section channel, a water bath, and a heater with a temperature detection switch. After cutting, dozens of sections flow into the section channel and enter the water bath directly, thus unfolding automatically. This improves the efficiency of paraffin sectioning and makes this technology more convenient. Using this method, more adult mouse hippocampal sections, adult mouse kidney sections, embryonic 15.5 day-old (E15.5) mouse brain sections, and adult zebrafish eye sections were harvested in less time and remained more intact morphologically. This method can also be used for other tissue samples that require accelerated paraffin sectioning while avoiding loss of section distinction.
Access restricted. Please log in or start a trial to view this content.
All methods described here have been approved by the Animal Care and Use Committee of Nanchang University.
1. Assemble the Equipment and Connect the Microtome
2. Paraffin Sectioning
NOTE: Debris often accumulate on the upper or lower edges of the wax block and the water surface. This debris should be cleared regularly.
Access restricted. Please log in or start a trial to view this content.
The improved method increased the number of intact paraffin sections. We tested this new method on adult mouse hippocampal tissue, adult mouse kidneys, embryonic mouse brains, and zebrafish eyes. Water was added to the tank, and the water temperature was maintained between 38.0 °C to 40.0 °C. After a serially preparing the tissue samples, they were sectioned and compared to conventional sectioning. The new method avoided section loss and increased the proportion of intact sectio...
Access restricted. Please log in or start a trial to view this content.
To improve paraffin section morphology and solve the problem of wasted time during conventional paraffin sectioning, we created an improved paraffin sectioning method that combines cutting and unfolding. This improved method relies on simple equipment that comprises a section channel, a water bath and a heater with a temperature detection switch. The section ribbon enters the water bath through the section channel and unfolds automatically while cutting. Therefore, this method improves paraffin sectioning quality and eff...
Access restricted. Please log in or start a trial to view this content.
The authors have a patent on this device and declare no competing interests.
This work was supported by the National Natural Science Foundation of China (Grant No. 31400936, 31460260) and the Natural Science Foundation of Jiangxi Province of China (20171BAB215020). We also thank the joint program between Nanchang University and Queen Mary University of London for supporting this work.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Incubator | Boekel Scientific | 133000-2 | |
Ethanol | Sinopharm Chemical Reagent Co.,Lid | 64-17-5 | |
Xylene | Sinopharm Chemical Reagent Co.,Lid | 1330-20-7 | |
Paraplast | Leica | 39601006 | |
Heated Paraffin Embedding Module | Leica | ||
Commercial acrylic board | |||
Trichloromethane | Sinopharm Chemical Reagent Co.,Lid | 67-66-3 | |
Tubular electric heating element(12 V 200 W) | |||
Temperature controller(12 V 120 W) | Mingsuo | XH-W3002 | |
Rotary microtome | Leica | ||
Neutral silicone sealant | Link the water channel with the microtome knife holder | ||
Voltage transformer | Dearll | S-250-12 | |
Disposable blade | Accu-Edge | 4689 | |
Hematoxylin | Baso Diagnostics Inc. | BA-4025 | |
Eosin | Baso Diagnostics Inc. | BA-4025 | |
Microslide | Sail Brand | 7105 | |
Neutral balsam | Sinopharm Chemical Reagent Co.,Lid | 10004160 | |
Coverslip | Citoglas | 10212424C | |
Microscope | Carl Zeiss | ||
Hydrochloric acid | Xilong Chemical | 7647-01-0 | |
Water bath for paraffin sections | Leica | ||
HistoCore Arcadia C - Cold Plate | Leica | ||
paraffin repellent spray | Thermo Scientific | 9990420 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone