JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here, we present a protocol to improve paraffin sectioning. This method combines cutting and floating using a simple thermostatic chamber to avoid the transfer process required by the conventional method. As a result, the efficiency and the number of intact paraffin sections were greatly improved.

Streszczenie

Sectioning of the paraffin-embedded tissue is widely used in histology and pathology. However, it is tedious. To improve this method, several commercial companies have devised complex section transfer systems using fluid water. To simplify this technology, we created a simple method using homemade equipment that combines cutting and floating within a simple thermostatic chamber; therefore, the sections automatically enter the water bath on the water surface. The hippocampus from adult mouse brains, adult mouse kidneys, embryonic mouse brains, and adult zebrafish eyes were cut using both conventional paraffin sectioning and the presented method for comparison. Statistical analysis shows that our improved method saved time and produced higher quality sections. In addition, paraffin sectioning of a whole specimen in a short time is easy for junior operators.

Wprowadzenie

Morphological study is important in the biological research. Although new technology has allowed researchers to observe their targets directly from the whole tissue or organisms1,2,3, cutting the specimen into thin sections, followed by staining, remains the primary method fornot only tissue morphology but also protein targeting directly in the tissue. Light microscopy uses three section types: paraffin, frozen, and semithin. Although cryosectioning is common for protecting tissue antigenicity, and the specimen preparation is simple, the retained tissue morphology is poor and unsuitable for thin sectioning4,5. Paraffin sectioning is the most frequently used method for exhibiting well preserved morphology. As the specimens are dehydrated completely and embedded in wax, the paraffin blocks can be stored indefinitely. In addition, paraffin sectioning produces thin sections that improve biological probe access in further experiments and reduce cell layer overlay in the Z direction.

However, conventional paraffin sectioning is tedious and demands operator skill. Paraffin sections undergo fixation, dehydration, embedding, cutting, and floating. Importantly, transferring section ribbons from the knife holder to the water bath is necessary but difficult for junior operators. Especially in dry air, the section ribbons will twist due to static electricity and are difficult to unfold on the warm water surface. To improve section quality, moistening the exposed tissue surface between microtome blade passes, cooling the wax blocks by immersing them in ice water, or raising the humidity with a humidifier near the microtome are recommended6,7. Newer methods for improving paraffin sectioning include hybrid paraffin embedding, cryosectioning8, and commercial section transfer system assistance9. Although these methods partially improve paraffin sectioning speed and quality, they make sectioning much more cumbersome, and commercial section transfer systems are expensive.

In this protocol, we demonstrate how to create simple, cheap and flexible equipment step by step, which can be connected to the blade holder of a rotary microtome. This equipment is comprised of a section channel, a water bath, and a heater with a temperature detection switch. After cutting, dozens of sections flow into the section channel and enter the water bath directly, thus unfolding automatically. This improves the efficiency of paraffin sectioning and makes this technology more convenient. Using this method, more adult mouse hippocampal sections, adult mouse kidney sections, embryonic 15.5 day-old (E15.5) mouse brain sections, and adult zebrafish eye sections were harvested in less time and remained more intact morphologically. This method can also be used for other tissue samples that require accelerated paraffin sectioning while avoiding loss of section distinction.

Access restricted. Please log in or start a trial to view this content.

Protokół

All methods described here have been approved by the Animal Care and Use Committee of Nanchang University.

1. Assemble the Equipment and Connect the Microtome

  1. Design the parameter per the requirements (Supplementary Figure 1).
  2. Submit the parameter to a local factory to manufacture the acrylic boards.
  3. Assemble all parts in sequence: Use chloroform to combine 7 commercial acrylic boards into a tank with a section channel and water bath (Figure 1).
    CAUTION: Chloroform produces toxic substances when it meets light and oxygen. Assemble the apparatus in a fume hood.
  4. Install the tubular electric heating element through the hole in acrylic board #1 (Figure 2A, arrowhead).
  5. To install the temperature controller, create a small hole on the #2 acrylic board using an electric drill, and install the temperature detector (Figure 2A, arrow). Install a digital thermostat on the tank (Figure 2A).
    NOTE: The temperature detector should be within 1 cm below the water surface.
  6. To provide power access, adjust the voltage below 24 V before turning on the equipment.
  7. Remove the section waste tray from the microtome.
  8. Link the sections channel with the microtome blade holder with neutral silicone sealant (Figure 2B).
    NOTE: Do not smear any neutral silicone sealant above the top of the blade so that the old blade is easily replaced.
  9. Dry overnight to allow the chloroform and neutral silicone sealant time to solidify.
  10. Install the blade to the blade holder. Pour water into the water bath (Figure 2C). The water surface should just touch the top of the blade (Figure 2D, arrow head).

2. Paraffin Sectioning

NOTE: Debris often accumulate on the upper or lower edges of the wax block and the water surface. This debris should be cleared regularly.

  1. Perform Conventional paraffin sectioning10.
    1. Clamp the paraffin-embedded specimen on a rotary microtome and place the blade in a blade holder.
    2. Turn the handwheel and section the specimen.
    3. Transfer the paraffin sectioned ribbon to the 38.5 °C warm water bath.
    4. Pick up the sections onto the microscope slide from the water surface after unfolding.
    5. Dry the slides in an oven at 42 °C overnight.
  2. Improved paraffin sectioning (Figure 3)
    1. Turn on the equipment.
    2. Open the heater with temperature detection switch and set the targeted temperature between 38.0 °C to 40.0 °C for 1 h in advance to warm the water.
    3. Modify the paraffin block acquired by paraffin embedding; then place the paraffin block on the microtome's cassette clamp and lock it.
      NOTE: The superior and inferior borders of the paraffin block should be modified horizontally to prevent the section ribbon from forming an arc and becoming unable to flow through the narrow sections channel.
    4. Quickly approach the sample by cutting thicker sections.
    5. Adjust to a suitable section thickness (10 µm for adult mouse brains, adult mouse kidneys, and embryo mouse brains, 4 µm for zebrafish eyes). Turn the handwheel and the sections will automatically enter the sections channel and bath.
    6. Section the specimen in a slow and uniform cutting stroke (Figure 3A).
      NOTE: Thethickness of the first section will be altered after the handwheel has been stopped for a few minutes. The disposable blades should be replaced when the sections have consecutive scratches.
    7. Guide the sections into the bath chamber to float in a line (Figure 3B, 3C).
      NOTE: If the head section adheres to the chamber wall, use a brush guide to keep it floating.
    8. Adhere sections onto microscope slides. After the sections fully unfold in the water bath, separate several sections with tweezers. Then pick them up from the water bath onto the microscope slides (Figure 3D).
      NOTE: Sections should be picked up from the posterior of the water bath, as those in the sections channel and the anterior of the water bath will not yet be fully unfolded.
    9. Dry the slides by placing them in a 42 °C oven overnight. The slides can then be stored at room temperature indefinitely.
  3. Use Hematoxylin-Eosin (HE) staining for the sake of evaluation of the improved method8.

Access restricted. Please log in or start a trial to view this content.

Wyniki

The improved method increased the number of intact paraffin sections. We tested this new method on adult mouse hippocampal tissue, adult mouse kidneys, embryonic mouse brains, and zebrafish eyes. Water was added to the tank, and the water temperature was maintained between 38.0 °C to 40.0 °C. After a serially preparing the tissue samples, they were sectioned and compared to conventional sectioning. The new method avoided section loss and increased the proportion of intact sectio...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

To improve paraffin section morphology and solve the problem of wasted time during conventional paraffin sectioning, we created an improved paraffin sectioning method that combines cutting and unfolding. This improved method relies on simple equipment that comprises a section channel, a water bath and a heater with a temperature detection switch. The section ribbon enters the water bath through the section channel and unfolds automatically while cutting. Therefore, this method improves paraffin sectioning quality and eff...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have a patent on this device and declare no competing interests.

Podziękowania

This work was supported by the National Natural Science Foundation of China (Grant No. 31400936, 31460260) and the Natural Science Foundation of Jiangxi Province of China (20171BAB215020). We also thank the joint program between Nanchang University and Queen Mary University of London for supporting this work.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
IncubatorBoekel Scientific133000-2
Ethanol Sinopharm Chemical Reagent Co.,Lid64-17-5
Xylene Sinopharm Chemical Reagent Co.,Lid1330-20-7
ParaplastLeica39601006
Heated Paraffin Embedding ModuleLeica
Commercial acrylic board
TrichloromethaneSinopharm Chemical Reagent Co.,Lid67-66-3
Tubular electric heating element(12 V 200 W)
Temperature controller(12 V 120 W)MingsuoXH-W3002
Rotary microtome Leica
Neutral silicone sealantLink the water channel with the microtome knife holder
Voltage transformerDearllS-250-12
Disposable bladeAccu-Edge4689
HematoxylinBaso Diagnostics Inc.BA-4025
Eosin Baso Diagnostics Inc.BA-4025
MicroslideSail Brand7105
Neutral balsamSinopharm Chemical Reagent Co.,Lid10004160
Coverslip Citoglas10212424C
MicroscopeCarl Zeiss
Hydrochloric acidXilong Chemical7647-01-0
Water bath for paraffin sectionsLeica
HistoCore Arcadia C - Cold PlateLeica
paraffin repellent spray Thermo Scientific9990420

Odniesienia

  1. Chung, K., Deisseroth, K. CLARITY for mapping the nervous system. Nature Methods. 10 (6), 508-513 (2013).
  2. Fujita, S. Analysis of neuron differentiation in the central nervous system by tritiated thymidine autoradiography. Journal of Comparative Neurology. 122 (3), 311-327 (1964).
  3. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R. R. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends in Biotechnology. 21 (4), 157-161 (2003).
  4. Fischer, A. H., Jacobson, K. A., Rose, J., Zeller, R. Cryosectioning tissues. Cold Spring Harbor Protocols. 3 (8), (2008).
  5. Viebahn, C., Luttenberg, H. P. A modified anti-roll plate as a remedy for the ill-effects of electrical charge during cryosectioning. Journal of Histochemistry and Cytochemistry. 37 (7), 1157-1160 (1989).
  6. Onozato, M. L., Hammond, S., Merren, M., Yagi, Y. Evaluation of a completely automated tissue-sectioning machine for paraffin blocks. Journal of Clinical Pathology. 66 (2), 151-154 (2013).
  7. Sabaliauskas, N. A., et al. High-throughput zebrafish histology. Methods. 39 (3), 246-254 (2006).
  8. Chen, T. K., et al. Hybrid-Cut: An Improved Sectioning Method for Recalcitrant Plant Tissue Samples. Journal of Visualized Experiments. (117), e54754(2016).
  9. Kucherenko, M. M., et al. Paraffin-Embedded and Frozen Sections of Drosophila Adult Muscles. Journal of Visualized Experiments. (46), e2438(2010).
  10. Cornell, W. C., et al. Paraffin Embedding and Thin Sectioning of Microbial Colony Biofilms for Microscopic Analysis. Journal of Visualized Experiments. (133), e57196(2018).
  11. Whiteland, J. L., et al. Immunohistochemical detection of T-cell subsets and other leukocytes in paraffin-embedded rat and mouse tissues with monoclonal antibodies. Journal of Histochemistry and Cytochemistry. 43 (3), 313-320 (1995).
  12. Tucker, D. K., Foley, J. F., Bouknight, S. A., Fenton, S. E. Sectioning Mammary Gland Whole Mounts for Lesion Identification. Journal of Visualized Experiments. (125), e55796(2017).
  13. Venegas-Pino, D. E., Banko, N., Khan, M. I., Shi, Y., Werstuck, G. H. Quantitative Analysis and Characterization of Atherosclerotic Lesions in the Murine Aortic Sinus. Journal of Visualized Experiments. (82), e50933(2013).
  14. Lau, S. K., Chu, P. G., Weiss, L. M. CD163: A specific marker of macrophages in paraffin-embedded tissue samples. American Journal of Clinical Pathology. 122 (5), 794-801 (2004).
  15. Campbell-Thompson, M. L., Heiple, T., Montgomery, E., Zhang, L., Schneider, L. Staining Protocols for Human Pancreatic Islets. Journal of Visualized Experiments. (63), e4068(2012).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Paraffin embedded TissueSectioningCutting And Floating MethodFume HoodAcrylic BoardsChloroformSection ChannelWater BathHeating ElementDigital ThermostatMicrotomeNeutral Silicone SealantParaffin SectioningTemperature Detection SwitchParaffin BlockCassette ClampSection ThicknessFloating SectionsMicroscope Slide

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone