Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we present a stepwise protocol to investigate the mitochondrial respiration and glycolytic function in Candida Albicans using an extra flux analyzer.
Mitochondria are essential organelles for the cellular metabolism and survival. A variety of key events take place in mitochondria, such as cellular respiration, oxidative metabolism, signal transduction, and apoptosis. Consequently, mitochondrial dysfunction is reported to play an important role in the antifungal drug tolerance and virulence of pathogenic fungi. Recent data have also led to the recognition of the importance of the mitochondria as an important contributor to fungal pathogenesis. Despite the importance of the mitochondria in fungal biology, standardized methods to understand its function are poorly developed. Here, we present a procedure to study the basal oxygen consumption rate (OCR), a measure of mitochondrial respiration, and extracellular acidification rates (ECAR), a measure of glycolytic function in C. albicans strains. The method described herein can be applied to any Candidaspp. strains without the need to purify mitochondria from the intact fungal cells. Furthermore, this protocol can also be customized to screen for inhibitors of mitochondrial function in C. albicans strains.
Invasive fungal infections kill over 1.5 million people a year worldwide. This number is on the rise due to an increase in the numbers of people living with compromised immunity, including the elderly, premature infants, transplant recipients, and cancer patients1. C. albicans is an opportunistic human fungal pathogen that is a part of the human microflora. It also inhabits mucosal surfaces and the gastrointestinal tract as a commensal organism. C. albicans produces serious systemic disease in people who have immune deficiencies, who have undergone surgery, or who have been treated with long courses of antibiotics. The Candida species rank among the top three to four causes of nosocomial infectious diseases (NID) in humans2,3,4,5,6,7. The annual global number of Candida bloodstream infections is estimated to be ~400,000 cases, with associated mortalities of 46-75%1. The annual mortality because of candidiasis is roughly 10,000 in the United States alone. The extent of NID caused by fungi is also reflected in astronomical patient expenses5. In the United States, the yearly expense for the treatment of invasive fungal infections surpasses $2 billion, adding a huge strain to already overburdened health care system. Currently, available standard antifungal therapies are limited because of toxicity, increasingly prevalent drug resistance, and drug-drug interactions. Therefore, there is an urgent need to identify new antifungal drug targets that will result in better treatment options for high-risk patients. However, the discovery of new drugs acting on fungal targets is complicated because fungi are eukaryotes. This greatly limits the number of fungal-specific drug targets.
Recent studies have indicated that mitochondria are a critical contributor to the fungal virulence and tolerance to antifungal drugs since mitochondria are important for cellular respiration, oxidative metabolism, signal transduction, and apoptosis8,9,10,11. Both glycolytic and non-glycolytic metabolism are essential for the survival of C. albicans in the mammalian host12,13,14,15,16. Furthermore, several C. albicans mutants lacking mitochondrial proteins, such as Goa1, Srr1, Gem1, Sam37 etc. have been shown to be defective in filamentation, an important virulence factor of C. albicans17,18,19,20,21,22. In addition, these mutants were also shown to be attenuated for virulence in a mouse model of disseminated candidiasis17,18,19,20,21,22. Thus, fungal mitochondria represent an attractive target for drug discovery. However, the study of mitochondrial function in C. albicans is challenging because C. albicans is petite negative23, which means that it cannot survive without the mitochondrial genome.
Here, we describe a protocol that can be used to investigate mitochondrial and glycolytic function in C. albicans without the need to purify mitochondria. This method can also be optimized to investigate the effect of the genetic manipulation or chemical modulators on mitochondrial and glycolytic pathways in C. albicans.
NOTE: The detailed stepwise protocol of the assay is described below, and the schematic protocol is shown in Figure 1.
1. C. albicans strains and growth conditions
2. Preparation of reagents
3. Coating of the assay plate with Poly-D-Lysine (PDL)
NOTE: Perform all the below steps in a laminar hood.
4. Hydration of sensor cartridge
NOTE: Perform this step one day before the experiment.
5. Growing and seeding cells in the PDL-coated plates
6. Assay Protocol
NOTE: The protocol outlined here is for the 24-well format of the instrument. Volumes will need to be adjusted if another format is used.
7. Data Analysis
The focus of this protocol is to determine the bioenergetic functions of C. albicans assessed by extra flux analyzer. A C. albicans mutant lacking mitochondrial protein Mam33 is also included along with its complement strain, mam33Δ/Δ::MAM33 to study the effects of the deletion of a mitochondrial protein on OCR and ECAR. MAM33 encodes for a putative mitochondrial acidic matrix protein and its function in Candida is not known.
The bioenergetics extra flux assay serves as an excellent tool to read out the mitochondrial function by measuring oxidative phosphorylation (OXPHOS)-dependent oxygen consumption in real-time. In addition, a glycolytic function which is measured as an extracellular acidification rate (change in extracellular pH) can also be investigated at the same time in real-time analysis.
Successful plating of C. albicans in the assay plate is one of the critical steps in the assay because the inc...
The authors have nothing to disclose
Research in NC lab is supported by a National Institutes of Health (NIH) grant R01AI24499 and a New Jersey Health Foundation (NJHF) grant, #PC40-18.
Name | Company | Catalog Number | Comments |
RPMI 1640 | Corning | MT50020PB | |
Antimycin A | Sigma | A8674 | |
KCN | |||
Mito stress kit | Agilent | 103015-100 | |
Oligomycin | Calbiochem | 495455 | |
pH meter | Accumet | AR20 | |
Phenol red | Sigma | P5530 | |
Poly-D lysine | Sigma | P6407 | |
Rotenone | Santa cruz | 203242 | |
Seahorse XF24 FluxPak | Agilent | 100850-001 | |
SHAM | |||
Sodium Chloride | Amresco | 241 | |
Sodium hydroxie pellets | J.T Baker | 3722 | |
Tissue culture grade water | Gibco | 1523-0147 | |
XF assay calibrant solution | Agilent | 100840-000 | |
Yeast extract Peptone Dextrose | Fisher scientific, | BP2469 | |
Yeast extract Peptone Dextrose Agar | Sigma | A1296 | |
Yeast extract Peptone Glycerol | Sigma | G2025 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone