Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Cell reprogramming requires the introduction of key genes, which regulate and maintain the pluripotent cell state. The protocol described enables the formation of induced pluripotent stem cells (iPSCs) colonies from human dermal fibroblasts without viral/integrating methods but using non-modified RNAs (NM-RNAs) combined with immune evasion factors reducing cellular defense mechanisms.
Induced pluripotent stem cells (iPSCs) could be considered, to date, a promising source of pluripotent cells for the management of currently untreatable diseases, for the reconstitution and regeneration of injured tissues and for the development of new drugs. Despite all the advantages related to the use of iPSCs, such as the low risk of rejection, the lessened ethical issues, and the possibility to obtain them from both young and old patients without any difference in their reprogramming potential, problems to overcome are still numerous. In fact, cell reprogramming conducted with viral and integrating viruses can cause infections and the introduction of required genes can induce a genomic instability of the recipient cell, impairing their use in clinic. In particular, there are many concerns about the use of c-Myc gene, well-known from several studies for its mutation-inducing activity. Fibroblasts have emerged as the suitable cell population for cellular reprogramming as they are easy to isolate and culture and are harvested by a minimally invasive skin punch biopsy. The protocol described here provides a detailed step-by-step description of the whole procedure, from sample processing to obtain cell cultures, choice of reagents and supplies, cleaning and preparation, to cell reprogramming by the means of a commercial non-modified RNAs (NM-RNAs)-based reprogramming kit. The chosen reprogramming kit allows an effective reprogramming of human dermal fibroblast to iPSCs and small colonies can be seen as early as 24 h after the first transfection, even with modifications with the respect to the standard datasheet. The reprogramming procedure used in this protocol offers the advantage of a safe reprogramming, without the risk of infections caused by viral vector-based methods, reduces the cellular defense mechanisms, and allows the generation of xeno-free iPSCs, all critical features that are mandatory for further clinical applications.
Cell reprogramming represents a novel technology to transform every somatic cell of the body into a pluripotent stem cell, known as iPSC1. The possibility of reprogramming an adult somatic cell back to a pluripotent and undifferentiated state has overcome the limits imposed by the poor availability and ethical issues related to the use of pluripotent cells, previously only derivable from human embryos (embryonic stem cells or ESC)2,3,4. In 2006, Kazutoshi Takahashi and Shinya Yamanaka conducted a pioneering study achieving the first conversion of adult somatic cells from skin into pluripotent cells by artificially adding four specific genes (Oct4, Sox2, Klf4, c-Myc)5. A year later, work conducted in Thomson's laboratory led to the successful reprogramming of somatic cells into iPSCs by transduction of a different combination of four genes (Oct4, Sox2, Nanog, Lin28)6.
iPSCs offer a number of opportunities to scientists and researchers of different fields, such as regenerative medicine and pharmacology, being an excellent platform to study and treat different diseases along with a genotypic reflection of the characteristics of the patient they are derived from. The use of iPSCs provides several advantages including: the reduced risk for immune response due to a completely autologous origin of cells; the possibility of creating a cell library, an important tool to predict response to new drugs and their side effects, as they are able to continuously self-renew and generate different cell types; and the chance to develop a customized approach for drug administration7,8,9.
Diverse techniques are known at present, to induce the expression of the reprogramming factors and they are included in two major categories: non-viral and viral vector-based methods10,11,12,13. Non-viral methods include mRNA transfection, miRNA infection/transfection, PiggyBac, minicircle vectors and episomal plasmids and exosomes10,11,12,13. Viral-based methods include non-integrating viruses, such as Adenovirus, Sendai virus and proteins, and integrating viruses like Retrovirus and Lentivirus10,11,12,13.
According to several studies, no significant differences have been noticed among these methods in terms of effectiveness of cell reprogramming, hence, the choice of the suitable method strictly depends on the cell type used and on the subsequent applications of the iPSCs obtained14,15. All the mentioned methods show disadvantages, for example, the Sendai virus is effective on all cell types, but requires a lot of passages to obtain iPSCs; reprogramming by episomes is excellent for blood cells but needs modification of standard culture conditions for fibroblasts; the PiggyBac method could represent an attractive alternative but studies in human cells are still limited and weak10,11,12,13. Exosomes are nano-vesicles physiologically secreted into all body fluids by cells. According to recent studies, they are responsible for intercellular communication and can have a role in important biological processes, such as cell proliferation, migration and differentiation. Exosomes can transport and transfer mRNA and miRNA to recipient cells with a completely natural mechanism, as they share the same composition of the cell membrane16. Therefore, exosomes are a promising new generation technique for reprogramming, but their potential to reprogram somatic cells by their content is still under investigation. Viral vectors-based methods use viruses modified in order to convey reprogramming genes to recipient cells. This technique, despite the high efficiency of reprogramming, is not considered safe, as the integration of the virus within the cell can be responsible for infection, teratomas and genomic instability17.
The following protocol to generate iPSCs colonies combines the Yamanaka's and Thompson's reprogramming cocktail and is based upon the use of a method requiring NM-RNAs and immune evasion factors with the possibility to perform it in xeno-free conditions. The rationale behind the use of this method is to spread, within the scientific community, a protocol allowing a rapid, simple and highly effective reprogramming of adult human fibroblasts from abdominal skin into iPSCs18.
The strengths of the proposed method are, in fact, the ease of performance and the short time needed to obtain iPSCs. Furthermore, the method avoids cellular defense mechanisms and the use of viral vectors, responsible for relevant issues.
With respect to the standard protocol, the following modifications were made: (1) Confluent fibroblasts were synchronized at passage 4 by being placing in 0.1% serum for 48 h before the trypsinization; (2) The cellular density for culture and the volume of reagents were adjusted for the utilization on a 24-well multi-well plate instead of a 6-well plate; (3) The reprogramming experiment was performed using a 5% CO2 incubator instead of an incubator with atmospheric (21% O2) or hypoxic (5% O2) conditions.
The specimens from human tissue were collected according to the Declaration of Helsinki while observing University Hospital Federico II guidelines. All patients involved in this study provided written consent.
1. Preparation of Supplies and Culture Media
2. Isolation of Human Dermal Fibroblasts
NOTE: Steps 2.1 to 2.3 reported below must be performed under a sterile hood. A cylindrical sample measuring about 0.8 cm in diameter yields 2 x 106 fibroblasts at passage 1.
3. Expansion of Human Skin Fibroblasts
NOTE: The steps reported below must be performed under a sterile hood except the steps performed in the incubator.
4. Reprogramming of Dermal Fibroblasts to iPSCs
The aim of the protocol was to reprogram dermal fibroblasts isolated from abdominal skin using non-integrating reprogramming method based on NM-RNAs to induce the expression of specific factors. To achieve this goal, human dermal fibroblasts were isolated from skin specimens of patients undergoing tummy tuck surgery and iPSCs were generated introducing Oct4, Sox2, Klf4, cMyc, Nanog, Lin28 reprogramming factors and E3, K3, B18 immune evasion factors by a commercial ready-to-use reprogramming kit that combines NM-RNA and m...
iPSCs are rapidly emerging as the most promising cell candidate for regenerative medicine applications and as a tremendously useful tool for disease modeling and drug testing3,8. The protocol presented here describes the generation of human iPSCs from a sample having the size of a skin punch biopsy with a simple and efficient procedure that does not require any specific equipment or previous experience with reprogramming technology.
It...
The authors have nothing to disclose.
The authors have no acknowledgments.
Name | Company | Catalog Number | Comments |
10 mL serological pipet | Falcon | 357551 | Sterile, polystyrene |
100 mm plates | Falcon | 351029 | Treated, sterile cell culture dish |
15 mL sterile tubes | Falcon | 352097 | Centrifuge sterile tubes, polypropylene |
24-well plates | Falcon | 353935 | Clear, flat bottom, treated multiwell cell culture plate, with lid, sterile |
25 mL serological pipet | Falcon | 357525 | Sterile, polystyrene |
35 mm plates | Falcon | 353001 | Treated, sterile cell culture dish |
5 mL serological pipet | Falcon | 357543 | Sterile, polystyrene |
50 mL sterile tubes | Falcon | 352098 | Centrifuge sterile tubes, polypropylene |
Advanced DMEM (Dulbecco's Modified Eagle Medium) | Gibco | 12491-015 | Store at 2-8 °C; avoid exposure to light |
DMEM (Dulbecco's Modified Eagle Medium) | Sigma- Aldrich | D6429-500ml | Store at 2-8 °C; avoid exposure to light |
Fetal Bovine Serum | Sigma- Aldrich | F9665-500ml | Store at -20 °C. The serum should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles |
Hank's Balanced Salt Solution | Sigma- Aldrich | H1387-1L | Powder |
L-glutamine | Lonza | BE17-605E | Store at -20 °C. It should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles |
Lipofectamine RNAiMAX Transfection Reagent | INVITROGEN | 13778-030 | Synthetic siRNA Transfection Reagent; store at 2-8 °C |
Matrigel | CORNING | 354234 | Basement Membrane Matrix, store at -20 °C. Avoid multiple freeze-thaws. |
Neubauer Chamber | VWR | 631-1116 | Hemocytometer |
NutriStem XF Culture Medium | Biological Industries | 05-100-1A-500ml | Xeno-free, serum-free, low growth factor human ESC/iPSC culture medium. Store at -20 °C. Upon thawing, the medium may be stored at 2-8 °C for 14 days. Media should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles. |
Opti-MEM | Gibco | 31985-062-100ml | Reduced-Serum Medium; store at 2-8 °C; avoid exposure to light |
Penicillin and Streptomycin | Sigma- Aldrich | P4333-100ml | Store at -20 °C. The solution should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles |
Potassium Chloride | Sigma- Aldrich | P9333 | Powder |
Potassium Phosphate Monobasic | Sigma- Aldrich | P5665 | Powder |
RNase-free 0.5 mL tubes | Eppendorf | H0030124537 | RNase-free sterile, microfuge tubes, polypropylene |
RNase-free 1.5 mL tubes | Eppendorf | H0030120086 | RNase-free sterile, microfuge tubes, polypropylene |
RNaseZAP | INVITROGEN | AM9780 | Cleaning agent for removing RNase |
Sodium Bicarbonate | Sigma- Aldrich | S5761 | Powder |
Sodium Chloride | Sigma- Aldrich | S7653 | Powder |
Sodium Phosphate Dibasic | Sigma- Aldrich | 94046 | Powder |
StemRNA 3rd Gen Reprogramming Kit | Reprocell | 00-0076 | Third Generation NM-RNAs-based Reprogramming Kit for Cellular Reprogramming of Fibroblasts, Blood, and Urine. Store at or below -70 °C. |
Trypsin-EDTA | Sigma- Aldrich | T4049-100ml | Store at -20 °C. It should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone