Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Low-grade heat is abundant, but its efficient recovery is still a great challenge. We report an asymmetric thermoelectrochemical cell using graphene oxide as a cathode and polyaniline as an anode with KCl as the electrolyte. This cell works under isothermal heating, exhibiting a high heat-to-electricity conversion efficiency in low-temperature regions.
Low-grade heat is abundantly available in the environment as waste heat. The efficient conversion of low-grade heat into electricity is very difficult. We developed an asymmetric thermoelectrochemical cell (aTEC) for heat-to-electricity conversion under isothermal operation in the charging and discharging processes without exploiting the thermal gradient or the thermal cycle. The aTEC is composed of a graphene oxide (GO) cathode, a polyaniline (PANI) anode, and 1M KCl as the electrolyte. The cell generates a voltage due to the pseudocapacitive reaction of GO when heating from room temperature (RT) to a high temperature (TH, ~40-90 °C), and then current is successively produced by oxidizing PANI when an external electrical load is connected. The aTEC demonstrates a remarkable temperature coefficient of 4.1 mV/K and a high heat-to-electricity conversion efficiency of 3.32%, working at a TH = 70 °C with a Carnot efficiency of 25.3%, unveiling a new promising thermoelectrochemical technology for low-grade heat recovery.
Ubiquitous low-grade heat energy (<100 °C) could be recycled and converted into electricity1,2 but is instead wasted. Unfortunately, heat recovery is still a great challenge, because converting low-grade heat to electricity is usually inefficient due to the low temperature differential and the distributed nature of the heat sources3. Intensive research has been conducted in solid-state thermoelectric (TE) materials and devices for the past decades, but the scalable application of TE devices in a low-grade heat regime is limited by the low energy conversion efficiency (ηE) of <2%4.
Alternative approaches based on the effect of temperature on electrochemical cells have been suggested as a solution to this problem, because the ionic Seebeck coefficient (α) of thermoelectrochemical cells (TECs) is much higher than that of TE semiconductors5,6. Thermogalvanic cells (TGC) utilize redox active electrolytes sandwiched between two identical electrodes to generate a voltage across the cell when a thermal gradient is applied. The commonly used aqueous Fe(CN)63-/Fe(CN)64- electrolyte in TGCs was reported to have an α of -1.4 mV/K and yield an ηE of <1%7,8,9,10,11. However, TGCs suffer the drawback of the poor ionic conductivity of the liquid electrolyte, which is around three orders of magnitude smaller than the electronic conductivity in TE materials. The electric conductivity could be improved, but this improvement is always accompanied by a higher thermal conductivity, which leads to a lower temperature gradient. Therefore, the ηE of TGCs is inherently limited due to the trade-off between the liquid electrolyte conductance and the temperature requirement for the desired redox reactions in each side of the electrode.
A thermally regenerative electrochemical cycle (TREC)12,13,14 based on a battery system using a solid copper hexacyanoferrate (CuHCF) cathode and a Cu/Cu+ anode was recently reported. TREC is configured as a pouch cell to improve the electrolyte conductance, showing an α of −1.2 mV/K and reaching a high ηE of 3.7% (21% of ηcarnot) when operated at 60 °C and 10 °C. Nevertheless, one limit of TREC is that external electricity is required at the start of the process to charge the electrodes in each thermal cycle, leading to complicated system designs14. A TREC without this limitation can be achieved, but it suffers from a poor conversion efficiency of <1%13. The TREC system demonstrates that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogues (PBA) with different α values can harvest waste heat. The thermal efficiency (η) increases proportionally with ΔT. Moreover, η reaches 1.08%, 3.19% at ΔT = 30 K, 56 K separately. The thermal cyclability is improved using Ni-substituted PBA15,16,17,18.
Alternatively, a thermally regenerative ammonia battery (TRAB) employs copper-based redox couples [Cu(NH3)42+/Cu and Cu(II)/Cu] that operate with the reverse temperature gradient by switching the temperature of electrolyte co-operated with positive and negative electrodes, which produces a ηE of 0.53% (13% of ηcarnot). However, this system is configured with two tanks full of liquid electrolyte, causing sluggish heating and cooling. Also, the ammonia stream in the system creates concerns regarding safety, leakage, and stability19,20,21.
Here we present an asymmetric thermoelectrochemical cell (aTEC) for heat-to-electricity conversion that can be thermally charged and electrically discharged by continuous isothermal heating without maintaining a temperature gradient in a geometric configuration or switching temperatures in a thermal cycle. The aTEC uses asymmetric electrodes, including a graphene oxide (GO) cathode and a polyaniline (PANI) anode, and KCl as the electrolyte. It is thermally charged via the thermo-pseudocapacitive effect of GO and then discharged with the oxidation reaction of PANI. Notably, the aTEC exhibits a high α of 4.1 mV/K and attains a ηE of 3.32%, the highest ever achieved at 70 °C (25.3% of ηCarnot).
1. Preparation of the graphene oxide electrode
2. Preparation of the polyaniline (PANI) electrode
3. Assembling the pouch cell
4. Setting up the temperature controlling system
5. Electrochemical characterization
The aTEC pouch cell was configured with asymmetric electrodes consisting of a GO cathode, a PANI anode, and filled with the KCl electrolyte. The thickness of the pouch cell shown in Figure 1A is 1 mm, which facilitates isothermal conditions between the two electrodes as well as efficient heat conduction. The scanning electron microscopy (SEM) images of the GO cathode and the PANI anode coated on carbon paper are shown in ...
The aTEC converts thermal energy into electricity via a thermal charging process when heating from RT to TH and a successive electrical discharging process at TH. Getting rid of the dependence on a temperature gradient or a temperature cycle like the TGC and TREC, aTEC allows isothermal heating operation during the entire charging and discharging processes. Thermal induced voltage is based on the pseudocapacitive effect of GO because heating facilitates the chemisorption of protons on the oxygen fun...
The authors declare no competing financial interests.
The authors acknowledge constructive discussion with Prof. D.Y.C. Leung and Dr. Y. Chen (The University of Hong Kong), Prof. M.H.K. Leung (City University of Hong Kong), Dr. W. S. Liu (Southern University of Science and Technology), and Mr. Frank H.T. Leung (Techskill [Asia] Limited). The authors acknowledge the financial support of General Research Fund of the Research Grants Council of Hong Kong Special Administrative Region, China, under Award Number 17204516 and 17206518, and Innovation and Technology Fund (Ref: ITS/171/16FX).
Name | Company | Catalog Number | Comments |
Alumina laminated film | Showa Denko | SPALF C4 | |
Carbon black | Alfa Aesar | H30253.22 | |
Carbon paper | CeTech Co. Ltd | W0S1009 | |
Carboxymethyl cellulose (CMC) | Guidechem company | ||
DC Power supply | B&K Precision | Model 913-B | |
Doctor blade coater | Shining Energy Co. Ltd | ||
Gamry | Gamry Instruments | Reference 3000 | |
Graphite | Sigma-Aldrich | 332461-2.5KG | |
Mixer | Thinky | ARE-250 | |
Nickel tab | Tianjin Iversonchem company | 4 mm width | |
N-Methyl-2-pyrrolidone (NMP) | Sigma-Aldrich | 443778-1L | |
Polyaniline (leucoemeraldine base) | Sigma-Aldrich | 530670-5G | |
potassium permanganate (KMnO4) | Sigma-Aldrich | 223468-500G | |
Separator | CLDP | 25 um thickness | |
Sodium nitrate (NaNO3) | Sigma-Aldrich | S5506-250G | |
Styrene butadiene | Tianjin Iversonchem company | BM400 | |
Sulfuric acid | Sigma-Aldrich | 320501-2.5L | |
Thermoelectric modules | CUI Inc. | CP455535H | |
Titanum foil | Qingyuan metal | 0.03 mm thickness |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone