Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes a method for mounting Drosophila larvae to achieve longer than 10 h of uninterrupted time-lapse imaging in intact live animals. This method can be used to image many biological processes close to the larval body wall.
Live imaging is a valuable approach for investigating cell biology questions. The Drosophila larva is particularly suited for in vivo live imaging because the larval body wall and most internal organs are transparent. However, continuous live imaging of intact Drosophila larvae for longer than 30 min has been challenging because it is difficult to noninvasively immobilizeimmobilizing larvae for a long time. Here we present a larval mounting method called LarvaSPA that allows for continuous imaging of live Drosophila larvae with high temporal and spatial resolution for longer than 10 hours. This method involves partially attaching larvae to the coverslip using a UV-reactive glue and additionally restraining larval movement using a polydimethylsiloxane (PDMS) block. This method is compatible with larvae at developmental stages from second instar to wandering third instar. We demonstrate applications of this method in studying dynamic processes of Drosophila somatosensory neurons, including dendrite growth and injury-induced dendrite degeneration. This method can also be applied to study many other cellular processes that happen near the larval body wall.
Time-lapse live imaging is a powerful method for studying dynamic cellular processes. The spatial and temporal information provided by time-lapse movies can reveal important details for answering cell biology questions. The Drosophila larva has been a popular in vivo model for investigations using live imaging because its transparent body wall allows for noninvasive imaging of internal structures1,2. In addition, numerous genetic tools are available in Drosophila to fluorescently label anatomical structures and macromolecules3. However, long-term time-lapse imaging of Drosophila larvae is challenging. Unlike stationary early embryos or pupae, Drosophila larvae move constantly, necessitating immobilization for live imaging. Effective ways of immobilizing live Drosophila larvae include mounting in halocarbon oil with chloroform4, anesthetizing using isoflurane or Dichlorvos solution5, and compressing between the coverslip and the microscope slide6. Although some of these methods have been used for microscopy, none of them is effective for long-term live imaging. Other methods were developed for imaging body wall neurons in crawling larvae using conventional confocal microscopy or light-sheet microscopy7,8,9. However, these methods are not ideal for monitoring cellular dynamics due to the movement of the larvae.
New methods have been developed to achieve long-term time-lapse imaging of Drosophila larvae. Using a polydimethylsiloxane (PDMS) "larva chip", Drosophila larvae can be effectively immobilized through vacuum-generated suction in a specialized microchamber without anesthetization. However, this method does not offer high temporal resolution for cell biology studies and it has strict limitations on animal size10. Another method using an anesthetization device achieved live imaging of Drosophila larvae at multiple time points and has been applied to study neuromuscular junctions11,12,13,14,15,16. However, this method also does not allow for continuous imaging for longer than 30 min and requires using desflurane repeatedly, which can inhibit neural activity and affect the biological process studied17,18. Recently, a new method that combines microfluidic device and cryoanesthesia has been used to immobilize larvae of various sizes for short periods of time (minutes)19. However, this method requires specialized devices such as a cooling system and longer periods of immobilization require repeated cooling of the larvae.
Here we present a versatile method of immobilizing Drosophila larvae that is compatible with uninterrupted time-lapse imaging for longer than 10 h. This method, which we call "Larva Stabilization by Partial Attachment" (LarvaSPA), involves adhering the larval cuticle to a coverslip for imaging in a custom-built imaging chamber. This protocol describes how to make the imaging chamber and how to mount larvae at a variety of developmental stages. In the LarvaSPA method, the desired body segments are affixed to the coverslip using a UV-reactive glue. A PDMS cuboid additionally applies pressure to the larvae, preventing escape. The air and moisture in the imaging chamber ensure the survival of the partially immobilized larvae during imaging. Advantages of LarvaSPA over other techniques include the following: (1) It is the first method that allows for continuous live imaging of intact Drosophila larvae for hours with high temporal and spatial resolution; (2) The method has fewer limitations on larval size; (3) The imaging chamber and PDMS cuboids can be manufactured at a minimal cost and are reusable.
In addition to describing the larval mounting method, we provide several examples of its application for studying dendrite development and dendrite degeneration of Drosophila dendritic arborization (da) neurons.
1. Making the imaging chamber
2. Making PDMS cuboids
3. Mounting larvae for long-term time-lapse imaging
4. Imaging
5. Recovery of imaging chamber and PDMS cuboids
The larva imaging chamber is constructed by gluing a custom-made metal frame and two coverslips together. The design of the metal frame is specified in Figure 1A. Drosophila larvae inside the chamber are adhered to the top coverslip with the aid of UV glue and PDMS cuboids. The groove on the PDMS cuboid and the double-sided tape the cuboid is attached to create the space to hold the larvae (Figure 1B,C). The PDMS also applies gentle pressure to ...
Here we describe LarvaSPA, a versatile method of mounting live Drosophila larvae for long-term time-lapse imaging. This method does not require recovering or remounting larvae, enabling uninterrupted imaging. It is therefore ideal for tracking biological processes that take hours to complete, such as dendrite degeneration and regeneration. This method can be also used for imaging intracellular calcium dynamics and subcellular events such as microtubule growth. As the larval body wall is stable during the imaging...
The authors declare no competing interests.
We thank Lingfeng Tang for establishing an earlier version of the LarvaSPA method; Glenn Swan at Cornell Olin Hall Machine shop for making earlier prototypes of the imaging chamber; Philipp Isermann for constructing metal frames and providing suggestions on making PDMS cuboids; Cornell BRC Imaging facility for access to microscopes (funded by NIH grant S10OD018516); Maria Sapar for critical reading of the manuscript. This work was supported by a Cornell Fellowship awarded to H.J.; a Cornell start-up fund and NIH grants (R01NS099125 and R21OD023824) awarded to C.H. H.J. and C.H. conceived the project and designed the experiments. H.J. conducted the experiments. H.J and C.H. wrote the manuscript.
Name | Company | Catalog Number | Comments |
6061 Aluminum bars | McMaster-Carr | 9246K421 | |
3M double-sided tape | Ted Pella, Inc. | 16093 | |
3M Scotch Packaging tape | 3M | 1.88"W x 22.2 Yards | |
DUMONT #3 Forceps | Fisher Scientific | 50-241-34 | |
Glass coverslip | Azer Scientific | 1152250 | |
Isoflurane | Midwest Veterinary Supply | 193.33161.3 | |
Leica Confocal Microscope | Leica | SP8 equipped with a resonant scanner | |
Lens paper | Berkshire | LN90.0406.24 | |
Petri dishes (medium) | VWR | 25373-085 | |
Petri dishes (small) | VWR | 10799-192 | |
Razor blade | Ted Pella, Inc. | 121-20 | |
Rectangular petri dish | VWR | 25384-322 | |
SYLGARD 184 kit (PBMS kit) | Electron Microscopy Sciences | 24236-10 | |
Transferring pipette | Thermo Fisher Scientific | 1371126 | |
UV glue | Norland products | #6106, NOA 61 | Refractive Index 1.56 |
UV lamp (Workstar 2003) | Maxxeon | MXN02003 | |
Vacuum desiccator | Electron Microscopy Sciences | 71232 | |
Wipes | Kimberly-Clark | Kimwipes |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone