Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Many characteristics of insect eusociality rely on within-colony communication and division of labor. Genetic manipulation of key regulatory genes in ant embryos via microinjection and CRISPR-mediated mutagenesis provides insights into the nature of altruistic behavior in eusocial insects.
The unique traits of eusocial insects, such as social behavior and reproductive division of labor, are controlled by their genetic system. To address how genes regulate social traits, we have developed mutant ants via delivery of CRISPR complex into young embryos during their syncytial stage. Here, we provide a protocol of CRISPR-mediated mutagenesis in Harpegnathos saltator, a ponerine ant species that displays striking phenotypic plasticity. H. saltator ants are readily reared in a laboratory setting. Embryos are collected for microinjection with Cas9 proteins and in vitro synthesized small guide RNAs (sgRNAs) using home-made quartz needles. Post-injection embryos are reared outside the colony. Following emergence of the first larva, all embryos and larvae are transported to a nest box with a few nursing workers for further development. This protocol is suitable for inducing mutagenesis for analysis of caste-specific physiology and social behavior in ants, but may also be applied to a broader spectrum of hymenopterans and other insects.
The evolution of eusociality in insects, namely those of the orders Hymenoptera and Blattodea (formerly Isoptera), has resulted in unique and often sophisticated behavioral traits that manifest on both the individual and the colony levels. Reproductive division of labor, a trait characterizing the most advanced groups of social insects, often involves caste systems composed of several behaviorally and often morphologically distinctive groups. Such behavioral and morphological diversity between castes is controlled not only by their genetic system, but also often by the environment1,2,3,4, making eusocial insects attractive subjects for genetic and epigenetic research.
The ability to manipulate the genetic system of eusocial insects has proven to be challenging as many species do not mate and reproduce in laboratory settings. Most eusocial insects also have very few reproductive individuals in a colony, limiting the number of offspring that can be produced and consequently, limiting the sample size for genetic manipulation5. Additionally, many eusocial insects have long generation times compared to insects commonly used for genetic studies (such as Drosophila), adding to the difficulty of establishing genetic lines5. Some eusocial species, however, can generate a large proportion of reproductively active individuals in a colony, which alleviates the challenges and provides opportunities to establish mutant or transgenic lines.
In the case of the ponerine ant species, Harpegnathos saltator, all female workers can become reproductively active upon the death of a queen or social isolation. These workers are referred to as "gamergates" and can be used to generate new colonies6. Furthermore, there may be more than one gamergate present in a colony, thus increasing offspring production5,7,8. Thus far, mutant and/or transgenic lines have been developed in the European honeybee, Apis mellifera, and in the ant species, H. saltator, Ooceraea biroi, and Solenopsis invicta9,10,11,12,13,14,15. Genetic analyses in social bees and ants have paved the way toward a better understanding of eusociality, providing an array of opportunities to study genes and their impacts on eusocial insect behavior and caste-specific physiology.
Here, we provide a protocol for genetic modification via the CRISPR/Cas9 system in H. saltator. Specifically, this technique was used to generate a germline mutation in orco, the gene encoding the obligate co-receptor of all odorant receptors (ORs)10. OR genes have been remarkably expanded in hymenopteran eusocial insects16, and orco plays an essential role in insect olfaction; in its absence, ORs do not assemble or function normally. Mutations of the orco gene therefore disrupt olfactory sensation, neural development, and associated social behaviors9,10.
In this protocol, Cas9 proteins and small guide RNAs (sgRNAs) are introduced into ant embryos using microinjection for the purpose of inducing mutagenesis of a target gene. Here, we will describe the microinjection procedure in detail along with directions regarding the care of colonies and injected embryos. These methods are appropriate for inducing mutagenesis in a variety of different genes in H. saltator ants and may be applied to a broader spectrum of hymenopteran insects.
1. Regular maintenance of Harpegnathos saltator colonies
2. Preparation of quartz glass microinjection needles
3. Preparation of microinjector
4. Injection of embryos
5. Rearing of injected embryos
Using the protocol provided here, genome editing in Harpegnathos saltator embryos was performed successfully. These results were validated via polymerase chain reaction and pGEM cloning of DNA extracted from injected embryos followed by DNA sequencing. Efficiency of somatic mutagenesis using this protocol reached approximately 40%. F1 mutant males were mated to wild type females to produce heterozygous F2 females which, if not mated, produced F3 males. Mutant F3 males were mated ...
The evolution of eusociality amongst insects, including ants, bees, wasps, and termites, has resulted in the appearance of novel behavioral and morphological traits, many of which are understood to be influenced by a combination of environmental and genetic factors1,2,3,4. Unfortunately, the attractiveness and usefulness of eusocial insects as research models in the field of genetics has been h...
The authors have nothing to disclose.
The authors thank Danny Reinberg's and Claude Desplan's labs at New York University and Jürgen Liebig's lab at Arizona State University for their support on ant genetics. Hua Yan acknowledges support from the National Science Foundation I/UCRC, the Center for Arthropod Management Technologies under Grant No. IIP-1821914 and by industry partners. Maya Saar was supported by the United States - Israel Binational Agricultural Research and Development Fund, Vaadia-BARD Postdoctoral Fellowship No. FI-595-19.
Name | Company | Catalog Number | Comments |
Antibiotic-Antimycotic (100X) | ThermoFisher | 15240-062 | |
Cas9 protein with NLS, high concentration | PNA Bio | CP02 | |
Cellophane Roll 20 inch X 5 feet | Hypogloss Products | B00254CNJA | The product has many color variations. Purchase it in red for use in making ant nests. |
Eclipse Ci-S upright microscope | Nikon | Ci-S | |
Featherweight forceps, narrow tip | BioQuip | 4748 | |
FemtoJet ll microinjector | Eppendorf | 920010504 | This product is no longer sold or supported by Eppendorf. A comparable microinjector may be used instead. |
Microloader pipette tips | Eppendorf | 930001007 | |
NCBI database | National Center for Biotechnology Information | Gene ID: 105183395 | |
P-2000 Micropipette Puller | Sutter Instruments | P-2000/G | |
Plastic boxes (19 X 13.5 cm2) | Pioneer Plastics | 079C | |
Plastic boxes (27 X 19 cm2) | Pioneer Plastics | 195C | |
Plastic boxes (9.5 X 9.5 cm2) | Pioneer Plastics | 028C | |
Quartz glass without filament | Sutter Instruments | Q100-50-7.5 | |
Vannas scissors, 8.5 cm | World Precision Instruments | 500086 | |
Winsor & Newton Cotman Water Colour Series 111 Short Handle Synthetic Brush - Round #000 | Winsor and Newton | 5301030 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone