Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
In this study, we present a real-time imaging method using confocal microscopy to observe cells moving toward damaged tissue by ex vivo incubation with the cochlear epithelium containing the organ of Corti.
To study the effects of mesenchymal stem cells (MSCs) on cell regeneration and treatment, this method tracks MSC migration and morphological changes after co-culture with cochlear epithelium. The organ of Corti was immobilized on a plastic coverslip by pressing a portion of the Reissner's membrane generated during the dissection. MSCs confined by a glass cylinder migrated toward cochlear epithelium when the cylinder was removed. Their predominant localization was observed in the modiolus of the organ of Corti, aligned in a direction similarly to that of the nerve fibers. However, some MSCs were localized in the limbus area and showed a horizontally elongated shape. In addition, migration into the hair cell area was increased, and the morphology of the MSCs changed to various forms after kanamycin treatment. In conclusion, the results of this study indicate that the coculture of MSCs with cochlear epithelium will be useful for the development of therapeutics via cell transplantation and for studies of cell regeneration that can examine various conditions and factors.
Hearing loss can occur congenitally or can be caused progressively by several factors, including aging, drugs, and noise. Hearing loss is often difficult to treat because it is very challenging to restore impaired function once the hair cells responsible for hearing are damaged1. According to the World Health Organization, 461 million people worldwide are estimated to have hearing loss, which accounts for 6.1% of the world's population. Of those with hearing loss, 93% are adults, and 7% are children.
A number of approaches have been attempted to treat hearing loss; notably, a regeneration approach using MSCs has emerged as a promising treatment. When tissue is damaged, MSCs are naturally released into the circulatory system and migrate to the injury site where they secrete various molecules to form a microenvironment that promotes regeneration2. Hence, it is important to develop a method to treat damaged tissues through the migration of externally implanted MSCs to target organs and their subsequent secretion of molecules that cause potent immune regulation, angiogenesis, and anti-apoptosis to enhance the restoration of damaged cell function3,4,5.
The homing process in which MSCs migrate to damaged tissues may be the most important obstacle to overcome. MSCs have a systemic homing mechanism with sequential steps of tethering/rolling, activation, arrest, transmigration/diapedesis, and migration6,7,8. Currently, efforts are underway to identify ways to improve these steps. Various strategies, including genetic modification, cell surface engineering, in vitro priming, and magnetic guidance, have been tested6,7. In addition, several attempts have been made to promote the protection and regeneration of auditory hair cells by homing MSCs to the site of damaged cochlea. However, tracking MSCs in vivo is time-consuming and labor-intensive and requires highly specialized skills9.
To solve this problem, a method was developed to observe the homing of MSCs in the cochlea through time-lapse confocal microscopy that photographs the migration of cells over several hours (Figure 1). It was developed in the early 20th century and has recently become a powerful tool for studying migration of specific cells.
Figure 1: Graphical abstract. (A) After the dissected organ of Corti is adhered on a plastic coverslip using forceps, the coverslip is placed on a 35 mm glass-bottomed confocal microscopic dish, and (B) the glass cylinder is positioned. (C) After filling the inside of the glass cylinder with medium, (D) GFP-labeled MSCs with medium are added carefully outside the cylinder. (E) After incubation overnight, (F) the glass cylinder is removed, and images are taken with a confocal microscope. Abbreviations: GFP = green fluorescent protein; MSCs = mesenchymal stem cells. Please click here to view a larger version of this figure.
All research protocols involving ICR mice were approved by the Institutional Animal Care and Use Committee (IACUC) of Yonsei University at Wonju College of Medicine. Experiments were performed according to the Code of Ethics of the World Medical Association. In this protocol, pregnant ICR mice were kept in a 12/12 h light/dark cycle with free access to food and water.
1. Cochleae dissection
Figure 2. Dissection of a mouse cochlea and coculture of the organ of Corti and MSCs. (A) Decapitation of mouse, (B) and (C) midline sagittal dissection of the head, (D) and (E) coronal dissection of the brain, (F) and (G) removal of the brain and temporal bone, (H) the cochlea, (I) removal of the bony cochlear wall, (J) isolation of the cochlea, (K) separation of the cochlear duct from the modiolus, (L) separation of stria vascularis (SV) and spiral ligament (SL) from the organ of Corti, (M) removal of the tectorial membrane, (N-P) fixation of the cochlea on a plastic cover slip, (Q) location of coverslip and glass cylinder in the confocal dish, (R) inoculation of MSCs. White scale bar (A-E) = 1 cm; orange (F, G, P) and yellow scale bar (H,I) = 1 mm; green scale bar (J-O) = 0.5 mm. Please click here to view a larger version of this figure.
2. Time-lapse imaging
3. Image file modification
4. Immunostaining
In vitro migration of MSCs in three-dimensional mode has been assessed by a Transwell system or by the traditional wound healing method to observe migration in two-dimensional (2D) mode11. The organ of Corti is a complex structure composed of various cells such as Boettcher cells, Claudius cells, Deiters cells, pillar cells, Hensen's cells, outer hair cells, inner hair cells, nerve fibers, basilar membrane, and reticular lamina12. When M...
Transplantation of MSCs into damaged sites to promote the regeneration of damaged cells has been extensively studied, and the therapeutic effect is evident.The transplantation and subsequent differentiation of MSCs have been reported to restore hearing in rats with hearing loss induced by 3-nitropropionic acid13. Although Lee et al. applied MSCs to human beings trans-venously, they did not achieve any significant improvement in hearing14. Until recently, nearly 12 expe...
The authors have nothing to disclose.
This work was supported by research grants (NRF-2018-R1D1A1B07050175, HURF-2017-66) from the National Research Foundation (NRF) of Korea and Hallym University Research Fund.
Name | Company | Catalog Number | Comments |
10X PBS Buffer | GenDEPOT | P2100-104 | |
4% Formalin | T&I | BPP-9004 | |
Ampicillin | sigma | A5354-10ml | |
BSA | sigma | A4503-100G | |
confocal dish | SPL | 200350 | |
confocal microscope | ZEISS | LSM800 | |
coverslip | SPL | 20009 | |
DMEM/F12 | Gibco | 10565-018 | |
Fetal Bovine Serum | Thermo Fisher scientific | 16140071 | |
Fluorsheild with DAPI | sigma | F6057 | |
Forcep | Dumont | 0508-L5-P0 | |
HBSS | Thermo Fisher scientific | 14065056 | |
HEPES | Thermo Fisher scientific | 15630080 | |
N2 supplement | Gibco | 17502-048 | |
Phalloidin-iFluor 647 Reagent | abcam | ab176759 | |
Stage Top Incubator | TOKAI HIT | WELSX | |
Strain C57BL/6 mouse messenchymal stem cells with GFP | cyagen | MUBMX-01101 | |
Triton X-100 | sigma | T8787 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone