Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This paper describes methods for the generation, drug treatment, and analysis of patient-derived explants for assessing tumor drug responses in a live, patient-relevant, preclinical model system.
An understanding of drug resistance and the development of novel strategies to sensitize highly resistant cancers rely on the availability of suitable preclinical models that can accurately predict patient responses. One of the disadvantages of existing preclinical models is the inability to contextually preserve the human tumor microenvironment (TME) and accurately represent intratumoral heterogeneity, thus limiting the clinical translation of data. By contrast, by representing the culture of live fragments of human tumors, the patient-derived explant (PDE) platform allows drug responses to be examined in a three-dimensional (3D) context that mirrors the pathological and architectural features of the original tumors as closely as possible. Previous reports with PDEs have documented the ability of the platform to distinguish chemosensitive from chemoresistant tumors, and it has been shown that this segregation is predictive of patient responses to the same chemotherapies. Simultaneously, PDEs allow the opportunity to interrogate molecular, genetic, and histological features of tumors that predict drug responses, thereby identifying biomarkers for patient stratification as well as novel interventional approaches to sensitize resistant tumors. This paper reports PDE methodology in detail, from collection of patient samples through to endpoint analysis. It provides a detailed description of explant derivation and culture methods, highlighting bespoke conditions for particular tumors, where appropriate. For endpoint analysis, there is a focus on multiplexed immunofluorescence and multispectral imaging for the spatial profiling of key biomarkers within both tumoral and stromal regions. By combining these methods, it is possible to generate quantitative and qualitative drug response data that can be related to various clinicopathological parameters and thus potentially be used for biomarker identification.
The development of effective and safe anticancer agents requires appropriate preclinical models that can also provide insight into mechanisms of action that can facilitate the identification of predictive and pharmacodynamic biomarkers. Inter- and intratumor heterogeneity1,2,3,4,5 and the TME6,7,8,9,10,11,12 are known to influence anticancer drug responses, and many existing preclinical cancer models such as cell lines, organoids, and mouse models are not able to fully accommodate these crucial features. An "ideal" model is one that can recapitulate the complex spatial interactions of malignant with non-malignant cells within tumors as well as reflect the regional differences within tumors. This article focuses on PDEs as an emerging platform that can fulfil many of these requirements13.
The first example of the use of human PDEs, also known as histocultures, dates back to the late 1980s when Hoffman et al. generated slices of freshly resected human tumors and cultured them in a collagen matrix14,15. This involved establishing a 3D culture system that preserved tissue architecture, ensuring the maintenance of stromal components and cell interactions within the TME. Without deconstructing the original tumor, Hoffman et al.16 heralded a new approach of translational research, and since this time, many groups have optimized different explant methods with the aim of preserving the tissue integrity and generating accurate drug response data17,18,19,20,21,22,23,24, although some differences between protocols are evident. Butler et al. cultured explants in gelatin sponges to help the diffusion of nutrients and drugs through the specimen20,21,25, whereas Majumder et al. created a tumor ecosystem by culturing explants on top of a matrix composed of tumor and stromal proteins in the presence of autologous serum derived from the same patient22,23.
More recently, our group set up a protocol whereby explants are generated by fragmentation of tumors into 2 - 3 mm3-sized pieces that are then placed without additional components on permeable membranes at the air-liquid interface of a culture system24. Taken together, these numerous studies have demonstrated that PDEs allow the culture of intact, live fragments of human tumors that retain the spatial architecture and regional heterogeneity of the original tumors. In original experiments, explants or histocultures were usually subjected to homogenization following drug treatment, after which various viability assays were applied to the homogenized samples such as the histoculture drug response assay20,21, the MTT (3-(6)-2,5-diphenyltetrazolium bromide) assay, the lactate dehydrogenase assay, or the resazurin-based assay26,27,28. Recent progress in endpoint analysis techniques, particularly digital pathology, have now expanded the repertoire of endpoint tests and assays that can be performed on explants29,30. To apply these new technologies, instead of homogenization, explants are fixed in formalin, embedded in paraffin (FFPE) and then analyzed using immunostaining techniques, allowing spatial profiling. Examples of this approach have been documented for non-small cell lung cancer (NSCLC), breast cancer, colorectal cancer, and mesothelioma explants whereby immunohistochemical staining for the proliferation marker, Ki67, and the apoptotic marker, cleaved poly-ADP ribose polymerase (cPARP), was used to monitor changes in cell proliferation and cell death24,31,32,33,34.
Multiplexed immunofluorescence is particularly amenable for spatial profiling of drug responses in explants at endpoint35. For example, it is possible to measure the relocalization and spatial distribution of specific classes of immune cells, such as macrophages or T cells, within the TME upon drug treatment13,36,37,38, and investigate whether a therapeutic agent can favor the transition from "cold tumor" to "hot tumor"39. In recent years, this group has focused on the derivation of PDEs from different tumor types (NSCLC, renal cancer, breast cancer, colorectal cancer, melanoma) and the testing of a range of anticancer agents including chemotherapies, small-molecule inhibitors, and immune checkpoint inhibitors (ICIs). Endpoint analysis methods have been optimized to include multiplexed immunofluorescence to allow spatial profiling of biomarkers for viability as well as biomarkers for different constituents of the TME.
1. Tissue collection
2. Explant preparation
3. Drug treatment
4. Histological processing
5. Hematoxylin and eosin (H&E) staining
6. Immunostaining
NOTE: The following steps should be carried out at RT unless stated otherwise.
7. Scanning
NOTE: Slide scanning was performed using a multispectral automated imaging system (see the Table of Materials).
8. Analysis
NOTE: The protocol below illustrates the method for phenotype analysis.
Multispectral imaging of mIF-stained histological sections permits identification and phenotyping of individual cell populations and identification of tumor and stromal components in the explant TME (Figure 2). Multispectral imaging is particularly useful for the analysis of tissues with high intrinsic autofluorescence, such as tissue with a high collagen content, as it allows the autofluorescence signal to be deconvoluted from other signals and excluded from subsequent analysis. Subsequent ...
This paper describes the methods for generation, drug treatment, and analysis of PDEs and highlights the advantages of the platform as a preclinical model system. Ex vivo culturing of a freshly resected tumor, which does not involve its deconstruction, allows for the retention of the tumor architecture13,24 and thus, the spatial interactions of cellular components in the TME as well as intratumoral heterogeneity. This method demonstrates how, by using a tumo...
Nothing to disclose
We thank the surgeons and pathologists at University Hospitals of Leicester NHS Trust for providing surgical resected tumor tissue. We also thank the Histology facility within Core Biotechnology Services for help with tissue processing and sectioning of FFPE tissue blocks and Kees Straatman for support with use of the Vectra Polaris. This research was supported and funded by the Explant Consortium comprising four partners: The University of Leicester, The MRC Toxicology Unit, Cancer Research UK Therapeutic Discovery Laboratories, and LifeArc. Additional support was provided by the CRUK-NIHR Leicester Experimental Cancer Medicine Centre (C10604/A25151). Funding for GM, CD, and NA was provided by Breast Cancer Now's Catalyst Programme (2017NOVPCC1066), which is supported by funding from Pfizer.
Name | Company | Catalog Number | Comments |
Acetic acid | Sigma | 320099 | Staining reagent |
Antibody Diluent / Block, 1x | Perkin Elmer | ARD1001EA | Antibody diluent/blocking buffer |
Barnstead NANOpure Diamond | Barnstead | Ultra Pure (UP) H2O machine | |
Citric Acid Monohydrate | Sigma-Aldrich | C7129 | Reagent for citrate buffer |
Costar Multiple Well Cell Culture Plates | Corning Incorporated | 3516 | 6 multiwell plate |
DAPI Dilactate | Life Technologies | D3571 | |
100 x 17 mm Dish, Nunclon Delta | ThermoFisher Scientific | 150350 | 100 mm diameter dish for tissue culture |
DMEM (1x) Dubelcco's Modified Eagle Medium + 4.5 g/L D-Glucose + 110 mg/mL Sodium Pyruvate | Gibco (Life Technologies) | 10569-010 | Tissue culture medium (500 mL) |
DPX mountant | VWR | 360294H | Mounting medium |
DPX mountant | Merck | 6522 | Mounting medium |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | 3609 | Reagent for TE buffer |
Eosin | CellPath | RBC-0100-00A | Staining reagent |
Foetal Bovine Serum | Gibco | 10500-064 | For use in tissue culture medium |
37% Formaldehyde | Fisher (Acros) | 119690010 | 10% Formalin |
iGenix, microwave oven IG2095 | iGenix | IG2095 | Microwave used for antigen retreival |
Industrial methylated spirit (IMS) | Genta Medical | 199050 | 99% Industrial Denatured Alcohol (IDA) |
InForm Advanced Image Analysis Software | Akoya Biosciences | InForm | |
Leica ASP3000 Tissue Processor | Leica Biosystems | Automated Vacuum Tissue Processor | |
Leica Arcadia H and C | Leica Biosystems | Embedding wax bath | |
Leica RM2125RT | Leica Biosystems | Rotary microtome | |
Leica ST4040 Linear Stainer | Leica Biosystems | H&E stainer | |
Mayer's Haematoxylin | Sigma | GHS132-1L | Staining reagent |
Millicell Cell Culture Inserts, 30 mm, hydrophilic PTFE, 0.4 µm | Merck Milipore | PICMORG50 | Organotypic culture insert disc |
Novolink Polymer Detection System | Leica Biosystems | RE7150-K | DAB staining kit |
OPAL 480 | Akoya Biosciences | FP1500001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 520 | Akoya Biosciences | FP1487001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 570 | Akoya Biosciences | FP1488001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 620 | Akoya Biosciences | FP1495001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 650 | Akoya Biosciences | FP1496001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 690 | Akoya Biosciences | FP1497001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent |
OPAL 780 / OPAL TSA-DIG Reagent | Akoya Biosciences | FP1501001KT | Fluorophore with Dimethyl Sulfoxide (DMSO) diluent and TSA-DIG reagent |
Opal Polymer HRP Ms Plus Rb, 1x | Perkin Elmer | ARH1001EA | HRP polymer |
Penicillin/streptomycin solution | Fisher Scientific | 11548876 | For use in tissue culture medium |
PhenoChart Whole Slide Contextual Viewer | Akoya Biosciences | PhenoChart | Viewer software for scanned images |
Phosphate Buffered Saline Tablets | Thermo Scientific Oxoid | BR0014G | PBS |
1x Plus Amplification Diluent | Perkin Elmer | FP1498 | Fluorophore diluent |
Prolong Diamond Antifade Mountant | Invitrogen | P36961 | Mounting medium |
Slide Carrier | Perkin Elmer | To load slides into Slide Carrier Hotel for scanning with Vectra Polaris | |
Sodium Chloride | Fisher Scientific | S/3160/63 | 10% Formalin |
Sodium Hydroxide pellets | Fisher Scientific | S/4920/53 | Reagent for citrate buffer |
Tenatex Toughened Wax - Pink (500 g) | KEMDENT | 1-601 | Dental wax surface |
Thermo Scientific Shandon Sequenza Slide Rack for Immunostaining Center | Fisher Scientific | 10098889 | Holder for slides and slide clips |
Thermo Scientific Shandon Plastic Coverplates | Fisher Scientific | 11927774 | Slide clips |
Tris(hydroxymethyl)aminomethane (Tris) | Sigma-Aldrich | 252859 | Reagent for TE buffer |
VectaShield | Vecta Laboratories | H-1000-10 | Mounting medium |
Vectra Polaris Slide Scanner | Perkin Elmer | Vectra Polaris | Slide scanner |
Xylene | Genta Medical | XYL050 | De-waxing agent |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone