Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This paper describes methods for the generation, drug treatment, and analysis of patient-derived explants for assessing tumor drug responses in a live, patient-relevant, preclinical model system.

Abstract

An understanding of drug resistance and the development of novel strategies to sensitize highly resistant cancers rely on the availability of suitable preclinical models that can accurately predict patient responses. One of the disadvantages of existing preclinical models is the inability to contextually preserve the human tumor microenvironment (TME) and accurately represent intratumoral heterogeneity, thus limiting the clinical translation of data. By contrast, by representing the culture of live fragments of human tumors, the patient-derived explant (PDE) platform allows drug responses to be examined in a three-dimensional (3D) context that mirrors the pathological and architectural features of the original tumors as closely as possible. Previous reports with PDEs have documented the ability of the platform to distinguish chemosensitive from chemoresistant tumors, and it has been shown that this segregation is predictive of patient responses to the same chemotherapies. Simultaneously, PDEs allow the opportunity to interrogate molecular, genetic, and histological features of tumors that predict drug responses, thereby identifying biomarkers for patient stratification as well as novel interventional approaches to sensitize resistant tumors. This paper reports PDE methodology in detail, from collection of patient samples through to endpoint analysis. It provides a detailed description of explant derivation and culture methods, highlighting bespoke conditions for particular tumors, where appropriate. For endpoint analysis, there is a focus on multiplexed immunofluorescence and multispectral imaging for the spatial profiling of key biomarkers within both tumoral and stromal regions. By combining these methods, it is possible to generate quantitative and qualitative drug response data that can be related to various clinicopathological parameters and thus potentially be used for biomarker identification.

Introduction

The development of effective and safe anticancer agents requires appropriate preclinical models that can also provide insight into mechanisms of action that can facilitate the identification of predictive and pharmacodynamic biomarkers. Inter- and intratumor heterogeneity1,2,3,4,5 and the TME6,7,8,9,10,11,<....

Protocol

1. Tissue collection

  1. After surgery, transfer freshly resected human tumor specimens into a tube containing 25 mL of fresh culture medium (Dulbecco’s modified Eagle medium supplemented with 4.5 g/L glucose and L-glutamine + 1% (v/v) fetal calf serum + 1% penicillin–streptomycin) and stored on ice. Process the explant within 2 h of surgery in a sterile class II hood.

2. Explant preparation

  1. Clean al.......

Representative Results

Multispectral imaging of mIF-stained histological sections permits identification and phenotyping of individual cell populations and identification of tumor and stromal components in the explant TME (Figure 2). Multispectral imaging is particularly useful for the analysis of tissues with high intrinsic autofluorescence, such as tissue with a high collagen content, as it allows the autofluorescence signal to be deconvoluted from other signals and excluded from subsequent analysis. Subsequent .......

Discussion

This paper describes the methods for generation, drug treatment, and analysis of PDEs and highlights the advantages of the platform as a preclinical model system. Ex vivo culturing of a freshly resected tumor, which does not involve its deconstruction, allows for the retention of the tumor architecture13,24 and thus, the spatial interactions of cellular components in the TME as well as intratumoral heterogeneity. This method demonstrates how, by using a tumo.......

Acknowledgements

We thank the surgeons and pathologists at University Hospitals of Leicester NHS Trust for providing surgical resected tumor tissue. We also thank the Histology facility within Core Biotechnology Services for help with tissue processing and sectioning of FFPE tissue blocks and Kees Straatman for support with use of the Vectra Polaris. This research was supported and funded by the Explant Consortium comprising four partners: The University of Leicester, The MRC Toxicology Unit, Cancer Research UK Therapeutic Discovery Laboratories, and LifeArc. Additional support was provided by the CRUK-NIHR Leicester Experimental Cancer Medicine Centre (C10604/A25151). Funding for GM,....

Materials

NameCompanyCatalog NumberComments
Acetic acidSigma320099Staining reagent
Antibody Diluent / Block, 1xPerkin ElmerARD1001EAAntibody diluent/blocking buffer
Barnstead NANOpure DiamondBarnsteadUltra Pure (UP) H2O machine
Citric Acid MonohydrateSigma-AldrichC7129Reagent for citrate buffer
Costar Multiple Well Cell Culture PlatesCorning Incorporated35166 multiwell plate
DAPI DilactateLife TechnologiesD3571
100 x 17 mm Dish, Nunclon DeltaThermoFisher Scientific150350100 mm diameter dish for tissue culture
DMEM (1x) Dubelcco's Modified Eagle Medium + 4.5 g/L D-Glucose + 110 mg/mL Sodium PyruvateGibco (Life Technologies)10569-010Tissue culture medium (500 mL)
DPX mountantVWR360294HMounting medium
DPX mountantMerck6522Mounting medium
Ethylenediaminetetraacetic acid (EDTA)Sigma-Aldrich3609Reagent for TE buffer
EosinCellPathRBC-0100-00AStaining reagent
Foetal Bovine SerumGibco10500-064For use in tissue culture medium
37% FormaldehydeFisher (Acros)11969001010% Formalin
iGenix, microwave oven IG2095iGenixIG2095Microwave used for antigen retreival
Industrial methylated spirit (IMS)Genta Medical19905099% Industrial Denatured Alcohol (IDA)
InForm Advanced Image Analysis SoftwareAkoya BiosciencesInForm
Leica ASP3000 Tissue ProcessorLeica BiosystemsAutomated Vacuum Tissue Processor
Leica Arcadia H and CLeica BiosystemsEmbedding wax bath
Leica RM2125RTLeica BiosystemsRotary microtome
Leica ST4040 Linear StainerLeica BiosystemsH&E stainer
Mayer's HaematoxylinSigmaGHS132-1LStaining reagent
Millicell Cell Culture Inserts, 30 mm, hydrophilic PTFE, 0.4 µmMerck MiliporePICMORG50Organotypic culture insert disc
Novolink Polymer Detection SystemLeica BiosystemsRE7150-KDAB staining kit
OPAL 480Akoya BiosciencesFP1500001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 520Akoya BiosciencesFP1487001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 570Akoya BiosciencesFP1488001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 620Akoya BiosciencesFP1495001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 650Akoya BiosciencesFP1496001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 690Akoya BiosciencesFP1497001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent
OPAL 780 / OPAL TSA-DIG ReagentAkoya BiosciencesFP1501001KTFluorophore with Dimethyl Sulfoxide (DMSO) diluent and TSA-DIG reagent
Opal Polymer HRP Ms Plus Rb, 1xPerkin ElmerARH1001EAHRP polymer
Penicillin/streptomycin solutionFisher Scientific11548876For use in tissue culture medium
PhenoChart Whole Slide Contextual ViewerAkoya BiosciencesPhenoChartViewer software for scanned images
Phosphate Buffered Saline TabletsThermo Scientific OxoidBR0014GPBS
1x Plus Amplification DiluentPerkin ElmerFP1498Fluorophore diluent
Prolong Diamond Antifade MountantInvitrogenP36961Mounting medium
Slide CarrierPerkin ElmerTo load slides into Slide Carrier Hotel for scanning with Vectra Polaris
Sodium ChlorideFisher ScientificS/3160/6310% Formalin
Sodium Hydroxide pelletsFisher ScientificS/4920/53Reagent for citrate buffer
Tenatex Toughened Wax - Pink (500 g)KEMDENT1-601Dental wax surface
Thermo Scientific Shandon Sequenza Slide Rack for Immunostaining CenterFisher Scientific10098889Holder for slides and slide clips
Thermo Scientific Shandon Plastic CoverplatesFisher Scientific11927774Slide clips
Tris(hydroxymethyl)aminomethane (Tris)Sigma-Aldrich252859Reagent for TE buffer
VectaShieldVecta LaboratoriesH-1000-10Mounting medium
Vectra Polaris Slide ScannerPerkin ElmerVectra PolarisSlide scanner
XyleneGenta MedicalXYL050De-waxing agent

References

  1. Gerlinger, M., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine. 366 (10), 883-892 (2012).
  2. Jamal-Hanjani, M., et al. Tracking the evolution....

Explore More Articles

Patient derived Tumor ExplantsPreclinical PlatformDrug Resistance Prediction3D Tumor ContextDrug ResponseDrug MetabolismPharmacodynamic BiomarkersTissue SlicingOrganotypic CultureDrug TreatmentFormalin FixationHistological Processing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved