Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe a protocol to induce phase transition of TAR DNA-binding protein 43 (TDP-43) by light in the spinal motor neurons using zebrafish as a model.
Abnormal protein aggregation and selective neuronal vulnerability are two major hallmarks of neurodegenerative diseases. Causal relationships between these features may be interrogated by controlling the phase transition of a disease-associated protein in a vulnerable cell type, although this experimental approach has been limited so far. Here, we describe a protocol to induce phase transition of the RNA/DNA-binding protein TDP-43 in spinal motor neurons of zebrafish larvae for modeling cytoplasmic aggregation of TDP-43 occurring in degenerating motor neurons in amyotrophic lateral sclerosis (ALS). We describe a bacterial artificial chromosome (BAC)-based genetic method to deliver an optogenetic TDP-43 variant selectively to spinal motor neurons of zebrafish. The high translucency of zebrafish larvae allows for the phase transition of the optogenetic TDP-43 in the spinal motor neurons by a simple external illumination using a light-emitting diode (LED) against unrestrained fish. We also present a basic workflow of live imaging of the zebrafish spinal motor neurons and image analysis with freely available Fiji/ImageJ software to characterize responses of the optogenetic TDP-43 to the light illumination. This protocol enables the characterization of TDP-43 phase transition and aggregate formation in an ALS-vulnerable cellular environment, which should facilitate an investigation of its cellular and behavioral consequences.
Ribonucleoprotein (RNP) granules control a myriad of cellular activities in the nucleus and cytoplasm by assembling membrane-less partitions via liquid-liquid phase separation (LLPS), a phenomenon in which a homogeneous fluid demixes into two distinct liquid phases1,2. The dysregulated LLPS of RNA-binding proteins that normally function as RNP granule components promote abnormal phase transition, leading to protein aggregation. This process has been implicated in neurodevelopmental and neurodegenerative diseases3,4,5. The precise evaluation of a causal relationship between aberrant LLPS of RNA-binding proteins and disease pathogenesis is crucial for determining whether and how LLPS can be exploited as an effective therapeutic target. LLPS of RNA-binding proteins is relatively easy to study in vitro and in unicellular models but is difficult in multicellular organisms, especially in vertebrates. A critical requirement for analyzing such LLPS in individual cells within a tissue environment is to stably express a probe for the imaging and manipulation of LLPS in a disease-vulnerable cell type of interest.
Amyotrophic lateral sclerosis (ALS) is an ultimately fatal neurological disorder in which motor neurons of the brain and spinal cord are selectively and progressively lost due to degeneration. To date, mutations in more than 25 genes have been associated with the heritable (or familial) form of ALS, which accounts for 5%-10% of total ALS cases, and some of these ALS-causing genes encode RNA-binding proteins consisting of RNPs, such as hnRNPA1, TDP-43, and FUS6,7. Moreover, the sporadic form of ALS, which accounts for 90%-95% of total ALS cases, is characterized by the cytoplasmic aggregation of TDP-43 deposited in degenerating motor neurons. A major characteristic of these ALS-associated RNA-binding proteins is their intrinsically disordered regions (IDRs) or low-complexity domains that lack ordered three-dimensional structures and mediate weak protein-protein interactions with many different proteins that drive LLPS7,8. The fact that ALS-causing mutations often occur in the IDRs has led to the idea that aberrant LLPS and phase transition of these ALS-related proteins may underlie ALS pathogenesis9,10.
Recently, the optoDroplet method, a Cryptochrome 2-based optogenetic technique that allows the modulation of protein-protein interactions by light, was developed to induce phase transition of proteins with IDRs11. As this technique has been extended successfully to TDP-43, it has begun to uncover the mechanisms underlying pathological phase transition of TDP-43 and its associated cytotoxicity12,13,14,15. In this protocol, we outline a genetic method to deliver an optogenetic TDP-43 to ALS-vulnerable cell types, namely, spinal motor neurons in zebrafish using the BAC for the mnr2b/mnx2b gene encoding a homeodomain protein for motor neuron specification16,17. The high translucency of zebrafish larvae allows for simple, noninvasive light stimulation of the optogenetic TDP-43 that triggers its phase transition in the spinal motor neurons. We also present a basic workflow for the live imaging of the zebrafish spinal motor neurons and image analysis using the freely available Fiji/ImageJ software to characterize the responses of the optogenetic TDP-43 to the light stimulation. These methods allow for an investigation of TDP-43 phase transition in an ALS-vulnerable cellular environment and should help to explore its pathological consequences at cellular and behavioral levels.
All fish work was conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the Institutional Animal Care and Use Committee (approval identification number 24-2) of the National Institute of Genetics (Japan), which has an Animal Welfare Assurance on file (assurance number A5561-01) at the Office of Laboratory Animal Welfare of the National Institutes of Health (NIH, USA).
1. Construction of BACs for expression of optogenetic TDP-43 gene from the mnr2b promoter
2. Tol2 transposon-mediated BAC transgenesis in zebrafish
3. Preparation of LED for blue light illumination
4. Imaging of zebrafish larvae expressing optogenetic TDP-43
5. Light stimulation of opTDP-43h-expressing fish by field illumination of a blue light-emitting diode (LED) light
6. Visualization of cytoplasmic relocation of optogenetic TDP-43 in the spinal motor neurons
7. Ratiometric comparison between opTDP-43h and EGFP-TDP-43z signals using ImageJ/Fiji
Live imaging of optogenetic and non-optogenetic TDP-43 proteins in the mnr2b+ spinal motor neurons of zebrafish larvae
To induce TDP-43 phase transition in the spinal motor neurons in zebrafish, a human TDP-43h that is tagged with mRFP1 and CRY2olig22 at the N- and C-termini, respectively, was constructed and designated as opTDP-43h14 (Figure 1A). The opTDP-43h gene fragment was ...
The mnr2b-BAC-mediated expression of opTDP-43h and EGFP-TDP-43z in zebrafish provides a unique opportunity for live imaging of TDP-43 phase transition in the spinal motor neurons. The optical transparency of body tissues of zebrafish larvae allows for the simple and noninvasive optogenetic stimulation of opTDP-43h. Comparisons between single spinal motor neurons over time demonstrated that the light-dependent oligomerization of opTDP-43h causes its cytoplasmic clustering, which is reminiscent of ALS pathology.
KA and KK are the inventors of the intellectual property described in this manuscript and provisional patents have been submitted by the National Institute of Genetics.
This work was supported by SERIKA FUND (KA), KAKENHI Grant numbers JP19K06933 (KA) and JP20H05345 (KA).
Name | Company | Catalog Number | Comments |
Confocal microscope | Olympus | FV1200 | |
Epifluorescence microscope | ZEISS | Axioimager Z1 | |
Fluorescence stereomicroscope | Leica | MZ16FA | |
Glass base dish | IWAKI | 3910-035 | |
Incubator | MEE | CN-25C | |
LED panel | Nanoleaf Limited | Nanoleaf AURORA smarter kit | |
Mupid-2plus | TAKARA | AD110 | |
NucleoBond BAC100 | MACHEREY-NAGEL | 740579 | |
NuSieve GTG Agarose | LONZA | 50181 | |
Objective lens | Olympus | XLUMPlanFL N 20×/1.00 | |
Objective lens | ZEISS | Plan-Neofluar 5x/0.15 | |
Optical power meter | HIOKI | 3664 | |
Optical sensor | HIOKI | 9742-10 | |
Phenol red solution 0.5% | Merck | P0290-100ML | |
PrimeSTAR GXL DNA Polymerase | TAKARA | R050A | |
QIAquick Gel Extraction Kit | Qiagen | 28704 | |
Six-well dish | FALCON | 353046 | |
Spectrometer probe BLUE-Wave | StellerNet Inc. | VIS-50 | |
Syringe needle | TERUMO | NN-2725R | |
TaKaRa Ex Taq | TAKARA | RR001A | |
Tricane | Sigma-Aldrich | A5040 | |
Zebrafish BAC clone CH211-172N16 | BACPAC Genomics | CH211-172N16 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone