Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The present protocol describes tools for handling silicon planar intracortical microelectrodes during treatments for surface modification via gas deposition and aqueous solution reactions. The assembly of the components used to handle the devices throughout the procedure is explained in detail.
Intracortical microelectrodes hold great therapeutic potential. But they are challenged with significant performance reduction after modest implantation durations. A substantial contributor to the observed decline is the damage to the neural tissue proximal to the implant and subsequent neuroinflammatory response. Efforts to improve device longevity include chemical modifications or coating applications to the device surface to improve the tissue response. Development of such surface treatments is typically completed using non-functional "dummy" probes that lack the electrical components required for the intended application. Translation to functional devices requires additional consideration given the fragility of intracortical microelectrode arrays. Handling tools greatly facilitate surface treatments to assembled devices, particularly for modifications that require long procedural times. The handling tools described here are used for surface treatments applied via gas-phase deposition and aqueous solution exposure. Characterization of the coating is performed using ellipsometry and x-ray photoelectron spectroscopy. A comparison of electrical impedance spectroscopy recordings before and after the coating procedure on functional devices confirmed device integrity following modification. The described tools can be readily adapted for alternative electrode devices and treatment methods that maintain chemical compatibility.
Neuroprosthetic devices aim to restore impaired or absent sensory and motor abilities in a wide range of patient populations, including those with spinal cord injury, Amyotrophic Lateral Sclerosis (ALS), cerebral palsy, and amputations1,2,3. Intracortical microelectrodes (IMEs) can establish a communication pathway between cortical neurons and the devices used to control neuroprosthetics. A distinct advantage of intracortical microelectrodes is their capability to record neural signals at the high spatial and temporal resolution, which is preferred for subsequent signal processing and control of brain-computer interfaces4,5. Unfortunately, the performance of intracortical microelectrodes dramatically reduces within months to a year following implantation2,6,7,8. The loss of signal quality and stability negatively affects the application of the technology.
A significant contributor to the observed performance decline is the biotic response to implantation-associated tissue damage and chronic neuroinflammation9,10,11. Implantation of IMEs inflicts damage on brain tissue, resulting in the release of signaling molecules that initiate cascades of reactionary cellular defense processes. Chronic interfacing exacerbates the foreign body response, leading to sustained neuroinflammation that damages tissue proximal to the device; often recognized as symptoms of neuroinflammation, scarring, and local neurodegeneration contributing to the decline of the recording of the signal quality12,13,14,15. Comprising a dense conglomerate of astrocytes with entrained activated microglia and macrophages, the scar that encapsulates the electrode creates an unfavorable local environment with reduced material transport and local accumulation of inflammatory factors16,15,16,17,18.
Many studies have described the brain's response to intracortical microelectrodes or approaches to mitigate the response7. Research and development into improving the tissue response have involved a range of strategies, including modifications to the overall structure, surface topology, materials, and coatings application. These efforts intend to minimize damage sustained from the implantation event, introduce a more favorable interface between the device and proximal cells, or reduce the tissue strain after devices are implanted7. Methods specifically targeting the chronic biologic response have led to several bioactive coatings that aim to stabilize the implantation site and chemically promote cell health. Examples include conductive polymers such as poly(ethylene dioxythiophene) (PEDOT)19,20, carbon nanotubes21, hydrogels22, and the addition of bioactive molecules and drugs to target specific cellular processes23,24,25. Our research group, in particular, have explored many mechanisms to promote a reduction of the inflammatory response to implanted microelectrodes including, but not limited to, minimizing the trauma associated with device implantation26, minimizing the device/tissue stiffness mismatch27,28,29,30,31,32,33, optimizing sterilization procedures34,35, reducing oxidative stress/damage28,36,37,38,39,40,41,42, exploring alternative electrode materials43, and mimicking the nano-architecture of the natural extracellular matrix44,45,46. Recent interest is the development of biomimetic surface coatings to mitigate the neuroinflammatory response at the microelectrode tissue interface directly39.
Modification of the interface offers the unique benefit of directly targeting the wound and the proximal tissue necessary for signal recording. A surface treatment that promotes healing without exacerbating the immune response can benefit the lifetime of quality recording and remove limitations in realizing the therapeutic and research potential of intracortical microelectrodes. The presented work details methods for applying surface treatments to microelectrode arrays that require extended reaction times while accommodating the fragility of the devices. The presented technique is intended to share surface modification methods to functional devices where the device cannot be handled throughout the treatment application. The tools are presented for handling non-functional dummy probes and functional silicon planar microelectrode arrays.
The presented approach to modify the electrode surface allows for the secure suspension of non-functional dummy probes or functional silicon planar electrode arrays for gas-phase deposition and reaction with aqueous solutions. Several 3D printed pieces are used to handle these fragile devices (Figure 1 and Figure 2). An example is provided of a procedure that utilizes both gas and solution phase steps for the surface modification with an antioxidative coating involving the immobilization of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP). MnTBAP is a synthetic metalloporphyrin possessing antioxidant properties with demonstrated mediation of inflammation47,48. The provided example on functional silicon planar electrode arrays validates an update to a previously reported protocol for non-functional devices40. The adaptation of a gas phase deposition technique from Munief et al. supports the protocol's compatibility with functional electrodes49. The gas-phase deposition is utilized to amine functionalize the surface in preparation for the aqueous reaction involving carbodiimide crosslinker chemistry to immobilize the active MnTBAP. The handling methodology developed here is provided as a platform that can be modified to accommodate other coatings and similar devices.
The protocol illustrates the approach using non-functional dummy probes comprising a silicon shank and 3D printed tab with similar dimensions to the functional silicon planar electrode arrays. The connector packaging of the device is considered analogous to the 3D printed tab of the non-functional dummy probe in the provided instruction.
Figure 1: 3D printed pieces for handling functional devices during the gas-phase deposition in a vacuum desiccator. (A) The structure's base includes holders for 1 cm x 1 cm sample silicon squares (top arrow) and holes for securing to desiccator plate (bottom arrow). (B) The plate is used to secure the suspension of devices. From here onward, each piece in this figure will be referred to as either piece 1A or 1B. Scale bar = 1 cm. Please click here to view a larger version of this figure.
Figure 2: 3D printed pieces for handling functional devices for the surface reaction occurring in the aqueous solution. (A) Guide piece to be glued to the lid of the culture plate. (B) Benchtop pieces used to stabilize pieces (C) and (D) while assembling. (C) and (D) together secure the suspension of devices for placement in the well plate, and (E) further secures pieces (C) and (D) to the well plate lid. From here onward, individual pieces in each panel of this figure will be referred to as piece numbers corresponding to the panel number of this figure. Scale bar = 1 cm. Please click here to view a larger version of this figure.
All the coding files for 3D printing are provided in Supplementary Coding Files 1-16. The analysis provided in the Representative results is described using commercially acquired functional silicon planar electrode arrays (see Table of Materials).
1. Handling assembly for gas-phase deposition in a vacuum desiccator
NOTE: The assembled apparatus for handling and holding devices during gas-phase deposition is shown in Figure 3. Steps 1.1-1.8 describe the procedure required to place the devices into the apparatus for deposition (Figure 4A).
Figure 3: Assembly of 3D printed pieces for handling functional devices during gas-phase deposition. The assembly is pictured without samples to be coated. Screws and wing nuts are used to fasten pieces 1A and 2B together. Please click here to view a larger version of this figure.
Figure 4: Image of assembly and placement of samples to be coated. This scheme describes the handling of functional devices during gas-phase deposition secured within a vacuum desiccator. (A) Double-sided polyimide tape placed on piece 1A and foam tape placed on 1B. (B) Devices secured onto tape. (C) Screws and wing nuts are used to fasten pieces 1B to 1A, and the assembly is attached to the desiccator tray using zip cable ties (red arrows). (D) 1 cm x 1 cm silicon square samples are placed into respective holders. (E) The aluminum weigh dish and pressure gauge are placed into the desiccator in the orientation shown. Please click here to view a larger version of this figure.
2. Handling assembly for surface reaction via aqueous solution
NOTE: The components and assembled apparatus for handling and holding devices during aqueous phase deposition and surface treatment are illustrated in Figures 5-7. The following steps will detail the procedure required to place the devices into the apparatus for deposition and treatment.
Figure 5: Assembly of 3D printed pieces for handling functional devices for the surface reaction occurring in aqueous solution. (A) Guide piece to be glued to the lid of the culture plate. (B) The benchtop piece was used to stabilize pieces (C) and (D) while assembling. (C) and (D) together secure the suspension of devices for placement in the well plate. (E) further secures pieces (C) and (D) to the well plate lid. Double-sided polyimide tape was placed on the lower portion of (C), and foam tape was placed on the lower portion of (D) (both boxed in red). Please click here to view a larger version of this figure.
Figure 6: Cell culture plate lid constructed with 6 guides (piece 2A). Please click here to view a larger version of this figure.
Figure 7: Sequence for securing and loading probes for solution reaction. The color of the parts was changed in this figure for clarity within the image. These are the same parts as Figure 5 and Figure 6. (A) Piece 2C is placed into piece 2B, and the device is secured to the taped portion of 2C. (B) Piece 2D fits into piece 2C to create an assembly that suspends the device shank. (C) The assembly of 2C, 2D, and the device is carefully positioned onto the lid of the well plate using the guide. (D) Piece 2E fits on top of the assembly to further secure the lid. Please click here to view a larger version of this figure.
To demonstrate the use of the handling components, the described methodology was implemented to adapt the immobilization of an oxidant mediator to activated silicon. The application of this chemistry to IMEs to reduce oxidative stress was devised by Potter-Baker et al. and demonstrated on non-functional silicon dummy probes40. This surface treatment immobilizes the antioxidant, MnTBAP, to UV/ozone activated silicon surface via amine functionalization followed by carbodiimide crosslinking ...
The described protocol was designed for the surface treatment of silicon planar microelectrode arrays. The 3D printed tools are customized to Michigan-style microelectrode arrays with low-profile connectors50. Non-functional probes were assembled by adhering a silicon probe to 3D printed tabs using a biocompatible adhesive. The 3D printed tabs were designed with similar dimensions to the connectors incorporated on the commercially available devices used. Files for the 3D printed tabs are available...
The contents do not represent the views of the US Department of Veterans Affairs, the National Institutes of Health, or the United States Government.
This study was supported in part by Merit Review Award IRX002611 (Capadona) and Research Career Scientist Award IK6RX003077 (Capadona) from the United States (US) Department of Veterans Affairs Rehabilitation Research and Development Service. Additionally, this work was also supported in part by the National Institute of Health, National Institute of Neurological Disorders and Stroke R01NS110823 (Capadona/Pancrazio), and the National Science Foundation Graduate Research Fellowship Program (Krebs).
Name | Company | Catalog Number | Comments |
1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC) | Sigma-Aldrich | 165344-1G | Solid, stored desiccated at -20 °C |
15 mL Conical Centrifuge Tubes | Fisher Scientific | 14-959-70C | |
18 Pound Solid Nylon Cable/Zip Ties | Cole-Parmer | EW-06830-66 | Length 4 inches |
2-(N-Morpholino)ethanesulfonic acid (MES) | Sigma-Aldrich | 4432-31-9 | Solid |
3-aminopropyltriethoxysilane (APTES) | Sigma-Aldrich | 440140-100ML | Liquid, container with Sure/Seal |
50 mL Conical Centrifuge Tubes | Fisher Scientific | 14-959-49A | |
Aluminum foil | Fisher Scientific | 01-213-103 | |
Aluminum weighing dishes | Fisher Scientific | 08-732-102 | Diameter 66 mm |
Bel-Art Vacuum Desiccator | Fisher Scientific | 08-594-15B | |
Corning Costar TC-Treated Multiple Well Plates | Millipore Sigma | CLS3527-100EA | 24-well plate, polystyrene |
Cyanoacrylate Adhesive | LocTite | N/A | |
Digital Microscope | Keyence | VHX-S750E | |
Disco DAD3350 Dicing Saw | Disco | DAD3350 | Used to cut silicon wafer into 1 cm x 1 cm samples |
Double-Sided Polyimide Tape | Kapton Tape | PPTDE-1/4 | ¼” x 36 yds. |
EP21LVMed – low viscosity, two component epoxy compound | Masterbond | EP21LVMed | Meets USP Class VI certification, Passes ISO 10993-5 for cytotoxicity |
Epilog Fusion Pro 48 Laser Machine | Epilog | N/A | CO2 laser |
Foam tape | XFasten | N/A | 1/8" Thick |
Gamry Interface 1010E Potentiostat | Gamry | 992-00129 | |
High precision 45° curved tapered very fine point tweezers/forceps | Fisher Scientific | 12-000-131 | |
Lab tape | Fisher Scientific | 15-901-10L | |
Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) | EMD Millipore | 475870-25MG | Solid, stored at -20 °C |
N-Hydroxysulfosuccinimide sodium salt, ≥98% (HPLC) | Sigma-Aldrich | 56485-250MG | Solid, stored desiccated at 4°C |
Platinum clad niobium mesh anode | Technic | N/A | Clad with 125μ” of platinum on one side, framed in titanium with (1) 1” x 6” titanium strap centered on one 6” dimension |
Silicon Planar Microelectrode Array, 16 Channel | NeuroNexus | A1x16-3mm-100-177-CM16LP | Electrode site material is iridium, shank thickness is 15 μm |
Silicon Wafer | University Wafer | 1575 | Diameter 100 mm, p-type, boron-doped, 100 oriented, resistivity 0.01-0.02 Ohm-cm, thickness 525 um, single side polished, prime grade |
Silver/silver Chloride reference electrode | Gamry Instruments | 930-00015 | |
Solidworks | N/A | ||
Stainless Steel Phillips Flat Head Screws | McMaster Carr | 96877A629 | #8-32, 1 1/2", fully threaded |
Type I deionized water | ChemWorld | CW-DI1-20 | |
Ultimaker 3 3D printer | Ultimaker | N/A | |
Ultimaker Cura | Ultimaker | N/A | 3D printing software |
Ultimaker NFC ABS Filament | Dynamism, Inc. | 1621 | 2.85 mm |
Ultimaker NFC PLA Filament | Dynamism, Inc. | 1609 | 2.85 mm |
Vacuum Gauge Vacuum Gauge | Measureman Direct | N/A | Glycerin Filled, 2-1/2” Dial Size, ¼”NPT, -30” Hg/-100kpa-0 |
Wing nuts | Everbilt | 934917 | #8-32, zinc plated |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone