Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
This protocol describes the key steps to generate and characterize murine oral-esophageal 3D organoids that represent normal, preneoplastic, and squamous cell carcinoma lesions induced via chemical carcinogenesis.
Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide, accounting for 90% of all esophageal cancer cases each year, and is the deadliest of all human squamous cell carcinomas. Despite recent progress in defining the molecular changes accompanying ESCC initiation and development, patient prognosis remains poor. The functional annotation of these molecular changes is the necessary next step and requires models that both capture the molecular features of ESCC and can be readily and inexpensively manipulated for functional annotation. Mice treated with the tobacco smoke mimetic 4-nitroquinoline 1-oxide (4NQO) predictably form ESCC and esophageal preneoplasia. Of note, 4NQO lesions also arise in the oral cavity, most commonly in the tongue, as well as the forestomach, which all share the stratified squamous epithelium. However, these mice cannot be simply manipulated for functional hypothesis testing, as generating isogenic mouse models is time- and resource-intensive. Herein, we overcome this limitation by generating single cell-derived three-dimensional (3D) organoids from mice treated with 4NQO to characterize murine ESCC or preneoplastic cells ex vivo. These organoids capture the salient features of ESCC and esophageal preneoplasia, can be cheaply and quickly leveraged to form isogenic models, and can be utilized for syngeneic transplantation experiments. We demonstrate how to generate 3D organoids from normal, preneoplastic, and SCC murine esophageal tissue and maintain and cryopreserve these organoids. The applications of these versatile organoids are broad and include the utilization of genetically engineered mice and further characterization by flow cytometry or immunohistochemistry, the generation of isogeneic organoid lines using CRISPR technologies, and drug screening or syngeneic transplantation. We believe that the widespread adoption of the techniques demonstrated in this protocol will accelerate progress in this field to combat the severe burden of ESCC.
Esophageal squamous cell carcinoma (ESCC) is the deadliest of human squamous cell carcinomas, owing to its late diagnosis, therapy resistance, and metastasis1,2. ESCC arises from the stratified squamous epithelium, which lines the luminal surface of the esophagus. The squamous epithelium is comprised of proliferative basal cells and differentiated cells within the suprabasal cell layer. Under physiologic conditions, basal cells express markers such as p63, Sox2, and cytokeratin K5 and K14, while differentiated cells express K4, K13, and IVL. Basal cells themselves are heterogeneous and include putative stem ce....
The murine experiments were planned and performed in accordance with regulations and under animal protocol #AABB1502, reviewed and approved by Columbia University's Institutional Animal Care and Use Committee. The mice were housed at a proper animal care facility that ensures the humane treatment of mice and provides appropriate veterinary care for the mice and laboratory safety training for the laboratory personnel.
1. Treatment of mice with 4NQO to induce esophageal IEN and ESCC lesions (time consideration: up to 28 weeks)
NOTE: To generate MEOs representing neoplastic esophageal lesions, the....
This protocol describes the process of generating murine esophageal organoids (MEOs) from normal esophageal tissue or ESCC tumor tissue from 4NQO-treated mice according to a specific treatment regimen consisting of 16 weeks of 4NQO administered in drinking water, followed by a 10 week to 12 week observation period (Figure 1). The mice are then euthanized for the dissection of the tongue or esophageal tissue (Figure 2 and Figure 3). .......
There are several critical steps and considerations for the generation and analysis of MEOs in the protocols described here. To ensure reproducibility and rigor in MEO experiments, biological and technical replicates are both important. For biological replicates, two to three independent mice bearing ESCC are generally sufficient per experimental condition. However, the appropriate number of biological replicates may vary depending on the parameters to be tested in individual studies. For example, it .......
The authors declare no conflicts of interest.
We thank the Shared Resources (Flow Cytometry, Molecular Pathology, and Confocal & Specialized Microscopy) at the Herbert Irving Comprehensive Cancer Center at Columbia University for technical support. We thank Drs. Alan Diehl, Adam J. Bass, and Kwok-Kin Wong (NCI P01 Mechanisms of Esophageal Carcinogenesis) and members of the Rustgi and Nakagawa laboratories for helpful discussions. This study was supported by the following NIH Grants: P01CA098101 (H.N. and A.K.R.), R01DK114436 (H.N.), R01AA026297 (H.N.), L30CA264714 (S.F.), DE031112-01 (F.M.H.), KL2TR001874 (F.M.H.),3R01CA255298-01S1 (J.G.), 2L30DK126621-02
(J.G.) R01CA266978 (C.L.),....
Name | Company | Catalog Number | Comments |
0.05% trypsin-EDTA | Thermo Fisher Scientific | 25-300-120 | |
0.25% trypsin-EDTA | Thermo Fisher Scientific | 25-200-114 | |
0.4% Trypan Blue | Thermo Fisher Scientific | T10282 | |
1 mL tuberculin syringe without needle | BD | 309659 | |
1.5 mL microcentrifuge tube | Thermo Fisher Scientific | 05-408-129 | |
100 µm cell strainer | Thermo Fisher Scientific | 22363549 | |
15 mL conical tubes | Thermo Fisher Scientific | 14-959-53A | |
200 µL wide bore micropipette tips | Thermo Fisher Scientific | 212361A | |
21 G needles | BD | 305167 | |
24 well plate | Thermo Fisher Scientific | 12-556-006 | |
4-Nitroquinoline-1-oxide (4NQO) | Tokyo Chemical Industry | NO250 | |
50 mL conical tubes | Thermo Fisher Scientific | 12-565-270 | |
6 well plate | Thermo Fisher Scientific | 12556004 | |
70 µm cell strainer | Thermo Fisher Scientific | 22363548 | |
99.9% ethylene propylene glycol | SK picglobal | ||
Advanced DMEM/F12 | Thermo Fisher Scientific | 12634028 | |
Amphotericin B | Gibco, Thermo Fisher Scientific | 15290018 | Stock concentration 250 µg/mL, final concentration 0.5 µg/mL |
Antibiotic-Antimycotic | Thermo Fisher Scientific | 15240062 | Stock concentration 100x, final concentration 1x |
B-27 supplement | Thermo Fisher Scientific | 17504044 | Stock concentration 50x, final concentration 1x |
Bacto agar | BD | 214010 | |
CO2 incubator, e.g.Heracell 150i | Thermo Fisher Scientific | 51026406 | or equivalent |
Countess II FL Automated Cell Counter | Thermo Fisher Scientific | AMQAX1000 | or equivalent |
Cryovials | Thermo Fisher Scientific | 03-337-7D | |
DietGel 76A | Clear H2O | 72-07-5022 | |
Dimethyl sulfoxide (DMSO) | MilliporeSigma | D4540 | |
Dispase | Corning | 354235 | Stock concentration 50 U/mL, final concentration 2.5–5 U/mL |
Dissecting scissors | VWR | 25870-002 | |
Dulbecco's phosphate-buffered saline (PBS) | Thermo Fisher Scientific | 14190250 | Stock concentration 1x |
Fetal bovine serum (FBS) | HyClone | SH30071.03 | |
Forceps | VWR | 82027-386 | |
Freezing container | Corning | 432002 | or equivalent |
Gelatin | Thermo Fisher Scientific | G7-500 | |
GlutaMAX | Thermo Fisher Scientific | 35050061 | Stock concentration 100x, final concentration 1x |
HEPES | Thermo Fisher Scientific | 15630080 | Stock concentration 1 M, final concentration 10 mM |
Hot plate/stirrer | Corning | PC-420D | or equivalent |
Lab Armor bead bath (or water bath) | VWR | 89409-222 | or equivalent |
Laboratory balance | Ohaus | 71142841 | or equivalent |
Matrigel basement membrane extract (BME) | Corning | 354234 | |
Microcentrifuge Minispin | Eppendorf | 22620100 | or equivalent |
Microcentrifuge tube rack | Southern Labware | 0061 | |
N-2 supplement | Thermo Fisher Scientific | 17502048 | Stock concentration 100x, final concentration 1x |
N-acetylcysteine (NAC) | Sigma-Aldrich | A9165 | Stock concentration 0.5 M, final concentration 1 mM |
Parafilm M wrap | Thermo Fisher Scientific | S37440 | |
Paraformaldehyde (PFA) | MilliporeSigma | 158127-500G | |
Pathology cassette | Thermo Fisher Scientific | 22-272416 | |
Phase-contrast microscope | Nikon | or equivalent | |
Recombinant mouse epidermal growth factor (mEGF) | Peprotech | 315-09-1mg | Stock concentration 500 ng/µL, final concentration 100 ng/mL |
RN cell-conditioned medium expressing R-Spondin1 and Noggin (RN CM) | N/A | N/A | Available through the Organoid and Cell Culture Core upon request, final concentration 2% |
Sorval ST 16R centrifuge | Thermo Fisher Scientific | 75004380 | or equivalent |
Soybean trypsin inhibitor (STI) | MilliporeSigma | T9128 | Stock concentration 250 µg/mL |
ThermoMixer C | Thermo Fisher Scientific | 14-285-562 PM | or equivalent |
Y-27632 | Selleck Chemicals | S1049 | Stock concentration 10 mM, final concentration 10 µM |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone