JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

This is a straightforward protocol of a barley leaf sheath assay using minimal reagents and common laboratory equipment (including a basic smartphone). The purpose is to visualize the early infection process of blast disease in labs without access to advanced microscopy equipment.

Streszczenie

Understanding how plants and pathogens interact, and whether that interaction culminates in defense or disease, is required to develop stronger and more sustainable strategies for plant health. Advances in methods that more effectively image plant-pathogen samples during infection and colonization have yielded tools such as the rice leaf sheath assay, which has been useful in monitoring infection and early colonization events between rice and the fungal pathogen, Magnaporthe oryzae. This hemi-biotrophic pathogen causes severe disease loss in rice and related monocots, including millet, rye, barley, and more recently, wheat. The leaf sheath assay, when performed correctly, yields an optically clear plant section, several layers thick, which allows researchers to perform live-cell imaging during pathogen attack or generate fixed samples stained for specific features. Detailed cellular investigations into the barley-M. oryzae interaction have lagged behind those of the rice host, in spite of the growing importance of this grain as a food source for animals and humans and as fermented beverages. Reported here is the development of a barley leaf sheath assay for intricate studies of M. oryzae interactions during the first 48 h post-inoculation. The leaf sheath assay, regardless of which species is being studied, is delicate; provided is a protocol that covers everything, from barley growth conditions and obtaining a leaf sheath, to inoculation, incubation, and imaging of the pathogen on plant leaves. This protocol can be optimized for high-throughput screening using something as simple as a smartphone for imaging purposes.

Wprowadzenie

Magnaporthe oryzae, the rice blast fungus, infects an assortment of grain crops, including barley, wheat, and rice1. This pathogen causes devastating diseases and poses a worldwide threat to these valuable crops, causing complete crop loss if not controlled. Many labs around the world focus on rice blast disease because of its global threat and its attributes as an excellent model for plant-fungal interactions2. It has been fully sequenced, and the genetics of its infective cycle, particularly the early events, have been established3,4. The life cycle begins with a spore germinating on a leaf surface, forming the specialized penetration structure called the appressorium. The appressorium penetrates the leaf tissue, and infection continues with the development of lesions which start the process of sporulation and spread disease4. Preventing any of these early events would drastically inhibit this devastating disease. Consequently, most current research on blast disease has been focused on the early infection steps, from the germinated conidia forming an appressorium to the development of the invasive hyphae and the biotrophic interfacial complex (BIC)5.

The vast amount of research on blast disease has been conducted in rice, even though M. oryzae is a significant pathogen for a variety of crops, and newly evolved strains are emerging as a global threat to wheat6. While rice is one of the top three staple crops used to feed the population, along with wheat and corn, barley is the fourth cereal grain in terms of livestock feed and beer production7. As the craft beer industry grows, so does the economic value of barley. There are distinct advantages of using M. oryzae and barley as a pathosystem to study blast disease. First, there are strains of M. oryzae that infect only barley, as well as strains that can infect multiple grass species. For example, 4091-5-8 infects primarily only barley, while Guy11 and 70-15 can infect both barley and rice8. These strains are genetically similar, and the infection process is comparable9. Second, under standard laboratory and greenhouse conditions, barley is easier to grow, as it doesn't have the complicated requirements of rice (concise temperature control, high humidity, specific light spectra). There are also imaging challenges with rice due to the hydrophobicity of the leaf surface, which barley does not exhibit10.

This protocol presents a simple method for isolating and effectively utilizing barley leaf sheaths for microscopic analysis of multiple infection stages, using common laboratory supplies and a smartphone for data collection. This method for the barley leaf sheath assay is adaptable for labs across the world as it requires minimal supplies, and yet provides a clear picture of the microscopic interaction between the pathogen and the first few cells it infects. Whereas pathogenicity assays, such as a spray or droplet inoculation, can provide a macro view of the pathogen's ability to form lesions, this assay allows the researcher to visualize specific steps of early infection, from pre-penetration events to colonization of epidermal cells. Further, researchers can easily compare infection with the wild-type fungus to infection with a mutant reduced in virulence.

Protokół

1. Preparation of experimental materials

  1. Prepare oatmeal agar (OMA) by blending oatmeal until it is a fine powder. Add 25 g of oatmeal powder and 15 g of agar to 500 mL of ddH2O, and autoclave on media cycle (alternatively bring to a boil for 20 min). Pour the media into sterile 60 mm Petri dishes.
    NOTE: Other media types that induce sporulation, such as V8 agar, are acceptable for this protocol.
  2. Plate M. oryzae filter stocks directly onto the OMA plates using sterile forceps, and allow them to cover the entire plate (9-12 days). Place the plates in a growth incubator at 25 °C with 12:12 h day:night cycles to help induce sporulation.
    NOTE: Some mutants grow more slowly and require additional care (e.g., complete media first, then a transfer to the OMA), and could take an additional week to produce enough conidia.
  3. Directly plant barley (Hordeum vulgare Lacey) seeds in a moist growth medium (e.g., soilless potting media) with 10-15 seeds per 6 inch pot. Place the pots in trays with 1-2 in of water.
  4. Set the barley growth chamber conditions as 22 °C for 12 h (daylight) and 19 °C for 12 h (dark) at 60% relative humidity. Continue to water from the bottom so as not to disturb the seeds.
  5. Grow the barley until the second leaf stage, approximately for 14 days. Using sterile scissors, cut the barley plant just above the soil line. Using forceps and a razor/scalpel, carefully cut the leaf sheath of the first leaf that is open longitudinally, and using the forceps, remove it from the base of the second leaf.
    NOTE: Clean the tools (forceps, scalpel, etc.) before use with 75%-80% ethanol. The sheath is the thin epidermis layer that provides the attachment from the first to the second leaf (second to third leaf, etc.; see Figure 1).
  6. Place the first leaf flat in a sterile 60 mm Petri dish, containing a wet paper towel to maintain humidity inside the plate. Using the scalpel, cut the majority of the first leaf away from the sheath, leaving only 0.5 in of the leaf tissue for mounting.
  7. Tape the leaf tissue to the bottom of the Petri plate.
    NOTE: The sheath curls, but this is acceptable as a curled sheath holds the conidial droplet more easily.
  8. Collect 9-12-day-old M. oryzae plates, and add 0.5-2 mL of sterile water to the plates. Using a sterile inoculation loop, gently scrape the mycelia to release the attached conidia. Carefully pipette the conidial suspension into a microcentrifuge tube containing a small piece of cheesecloth to filter out any large pieces of mycelium from the conidial suspension.
    NOTE: Spores can be collected as early as 7 days, if growth and sporulation are sufficient to reach the desired spore concentration. Collection can be delayed no more than 14 days if working with a slow-growing genetic mutant
  9. The desired spore concentration is 5 x 104 spores per mL, but a range (1 x 104-1 x 105) is acceptable. Too high of a concentration makes imaging individual infection sites challenging; dilute the spore concentration with sterile water if necessary.
  10. Carefully pipette the conidial suspension inside of the rolled leaf sheath. Start with 25 µL (the droplet size can be increased depending on the size of the sheath, up to 50 µL).
    NOTE: It is recommended to perform three to five replicates of each mutant strain or barley line. It is common for damage to occur during the staining process, therefore additional sheath replicates are recommended.
  11. Fill four or five 500 mL beakers with ddH2O, and heat until steaming (using a microwave or hotplate). Use caution when moving the hot water beakers. Hold the lid of the Petri dish over one of the steaming beakers to trap humidity inside the plate.
  12. Stack the infected leaf sheath plates and surround them with the remaining hot beakers. This creates a humid, moist environment, required for the spores to germinate.
    NOTE: Use caution when steaming the lids to ensure no hot water or steam touches the sheaths.
  13. Protect the leaf sheaths from light, cover with a solid colored (black preferred) rubber or plastic box, and let sit for 48 h or the desired time-point for imaging.
    ​NOTE: A cardboard box is not suitable because it does not lock in the moisture/humidity and absorbs the steam from the hot water beakers. A locking, plastic tub works well for containing the humidity, and it can be covered with black fabric or a larger dark container to block the light.

2. Staining process

  1. Prepare the stain as follows: prepare a fresh dilution of 45% acetic acid and add 0.1% v/v trypan blue. Aliquot 1 mL of the dye solution into microcentrifuge tubes. Set a heat block or water bath to 40 °C.
  2. Carefully, using a razor or scalpel, cut the leaf sheath away from the tape. Using forceps, place the sheath into the microcentrifuge tube and ensure that it is completely submerged in the dye solution. Allow 2 h for the dye to penetrate the leaf. Heat the samples at 40 °C during the staining process time in a heat block or water bath to increase the penetration of the dye.
    NOTE: The sheaths try to float in the micro-centrifuge tube; to prevent unstained pockets of leaf tissue, fill the tubes, submerge the sheaths, and close the tube. Do not put multiple sheaths in the same micro-centrifuge tube.
  3. Rinse the leaf sheaths carefully in 60% glycerol to remove the extra dye. Three rinses (each in fresh glycerol) are generally sufficient. Keep the sheath in glycerol until ready to mount on slides.

3. Mounting and imaging process

  1. Place the sheath on a clean glass slide and add a few drops of 60% glycerol. Using a dissecting microscope and two pairs of forceps, carefully unroll the sheath, leaving the inoculated center facing up. Hold the sheath open with the forceps, and place the coverslip on top to prevent the sheath from curling and blocking the infection site.
    NOTE: The leaf sheath is very fragile, and these steps need to be done with care to prevent damage to the sheath.
  2. Seal the coverslip using nail polish for long-term storage, or tape for short-term storage. Observe the slides under a compound light microscope.
  3. Take basic images using a microscope and a cell phone. Here, images were taken with a cell phone adapter mount and a smartphone. For Android devices, adjust the camera application to the following settings: flash off, disable Top Shot,disable automatic adjustment of brightness and shadows, and set the photo resolution to full.
    NOTE: Using the camera application on the phone decreases the battery life faster than usual, so having external power is recommended.
  4. Once the cell phone is mounted on the microscope, take an image of a scale micrometer with the objective that will be used to acquire the data. The data in this study was acquired at a 40x 0.65 NA air objective, and the phone adapter was mounted on a 10x ocular. Adjust the zoom of the phone to 2.5x, and keep it consistent to maintain a constant pixel size.
  5. The center of the sheath houses the largest concentration of spores and infecting appressoria; therefore, aim for 9-12 images of each sheath to obtain significant numbers for statistical analysis. The number of spores and appressoria vary based on the concentration of spores applied.

4. Image assessment and counting using ImageJ (FIJI)

  1. Transfer the images to a computer running ImageJ (FIJI). To open the images, drag and drop the files onto the ImageJ bar.
  2. Set the scale of the images by loading the stage micrometer image and drawing a straight line between two markings for the scale. Open Set Scale, type in the Known Distance for the line measured, and type in the unit for the scale. On the micrometer, in this example, the smallest line was 10 µm. Check the Set Global box and hit OK. All subsequent images loaded will have the same scale.
  3. To count appressoria, spores, or other objects, select the Point tool. Next, open the ROI Manager. Click the T key on the keyboard to add points to the list. These regions of interest can be saved if needed and reloaded onto the same image.
  4. Depending on the experimental goals, make additional measurements, such as spore length, appressoria size, and germ tube length.

Wyniki

A depiction of the initial workflow for this technique is displayed in Figure 1. The sheaths were harvested from 14-day-old susceptible "Lacey" barley plants (H. vulgare). The conidia were harvested from 10-day-old sporulating M. oryzae OMA plates, with a conidial suspension prepared using sterile ddH2O for a final concentration of 5 x 104 spores per mL. The inoculum suspension was directly applied to the leaf sheaths, which were secured to ste...

Dyskusje

There are many commonly used assays available to test M. oryzae strains that provide a macroscopic-level visual of a compatible or incompatible infection response, such as spray or droplet inoculations, and the use of rating systems to quantifylesion sizes13,14. Another common assay for M. oryzae is to test the ability of the pathogen to form its specialized penetration structure, the apppressorium15. Described here is an...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors acknowledge funding from the USDA-NIFA award 2016-67013-24816.

Materiały

NameCompanyCatalog NumberComments
Acetic acidSigma-AldrichA6283
Cell phone Google Pixel 4AAny smartphone with a rear facing camera that can be mounted in an a holder will suffice. 
Cell phone Microscope adapterVankeyB01788LT3Shttps://www.amazon.com/Vankey-Cellphone-Telescope-Binocular-Microscope/dp/B01788LT3S/ref=sr_1_2_sspa?keywords=vankey+cellphone+telescope+adapter+mount&qid=1662568182&sprefix=
vankey+%2Caps%2C63&sr=8-2
-spons&psc=1&spLa=ZW5jcnlwd
GVkUXVhbGlmaWVyPUFKNklBR
jlCREJaMEcmZW5jcnlwdGVkSWQ
9QTA2MDMxNjhBRFYxQTMzNk9E
M0YmZW5jcnlwdGVkQWRJZD1BM
DQxMzAzOTMxNzI1TzE3M1ZGTEI
md2lkZ2V0TmFtZT1zcF9hdGYmY
WN0aW9uPWNsaWNrUmVkaXJlY3
QmZG9Ob3RMb2dDbGljaz10cnVl
GlycerolSigma-AldrichG5516
MicroscopeAmScopeFM690TC40x–2500x Trinocular upright epi-fluorescence microscope
Oatmeal old fashioned rolled oatsQuakerN/Ahttps://www.amazon.com/Quaker-Oats-Old-Fashioned-Pack/dp/B00IIVBNK4/ref=asc_df_B00IIVBNK4/?tag=hyprod-20&linkCode=df0
&hvadid=312253390021&hvpos=
&hvnetw=g&hvrand=98212627704
6839544&hvpone=&hvptwo=&hvq
mt=&hvdev=c&hvdvcmdl=&hvlocint
=&hvlocphy=9007494&hvtargid
=pla-568492637928&psc=1
ProMix BXProMix1038500RG
Rectangular coverglassCorningCLS2975245
Slides, microscopeSigma-AldrichS8902
Stage micrometer OMAXA36CALM70.1 mm and 0.01 mm Microscope calibration slide
Trypan blueSigma-AldrichT6146

Odniesienia

  1. Roy, K. K., et al. First report of barley blast caused by Magnaporthe oryzae pathotype Triticum (MoT) in Bangladesh. Journal of General Plant Pathology. 87 (3), 184-191 (2021).
  2. Dean, R., et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. 13 (4), 414-430 (2012).
  3. Dean, R. A., et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 434 (7036), 980-986 (2005).
  4. Wilson, R. A., Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews. Microbiology. 7 (3), 185-195 (2009).
  5. Giraldo, M. C., et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications. 4, 1996 (2013).
  6. Islam, M. T. Emergence of wheat blast in Bangladesh was caused by a SouthAmerican lineage of Magnaporthe oryzae. BMC Biology. 14 (1), 84 (2016).
  7. Langridge, P. Economic and Academic Importance of Barley. The Barley Genome. Compendium of Plant Genomes. , 1-10 (2018).
  8. Heath, M. C., Valent, B., Howard, R. J., Chumley, F. G. Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass. Canadian Journal of Botany. 68 (8), 1627-1637 (1990).
  9. Gowda, M., et al. Genome analysis of rice-blast fungus Magnaporthe oryzae field isolates from southern India. Genomics Data. 5, 284-291 (2015).
  10. Luginbuehl, L. H., El-Sharnouby, S., Wang, N., Hibberd, J. M. Fluorescent reporters for functional analysis in rice leaves. Plant Direct. 4 (2), 00188 (2020).
  11. Fernandez, J., Wilson, R. A. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions. 25 (10), 1286-1293 (2012).
  12. Cooper, J. G. Identifying Genetic Control of Reactive Oxygen Species in Magnaporthe oryzae (the Rice Blast Fungus) through Development, Screening, and Characterization of a Random Insert Mutant Library. University of Delaware. , (2022).
  13. Zhang, M., et al. al.The plant infection test: Spray and wound-mediated inoculation with the plant pathogen Magnaporthe grisea. Journal of Visualized Experiments. (138), e57675 (2018).
  14. Koga, H., Dohi, K., Nakayachi, O., Mori, M. A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants. Physiological and Molecular Plant Pathology. 64 (2), 67-72 (2004).
  15. Hamer, J. E., Howard, R. J., Chumley, F. G., Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 239 (4837), 288-290 (1988).
  16. Khang, C. H., et al. et al. of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. The Plant Cell. 22 (4), 1388-1403 (2010).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Rice Blast DiseaseMagnaporthe OryzaeBarleyHordeum VulgareFungal MutantsBasic MicroscopeSmartphone VisualizationInfection SitesSheath TreatmentConidial SuspensionSterile Inoculation LoopHumidity MaintenanceExperimental ProtocolSpore Concentration

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone