Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

The feasibility and effectiveness of high-throughput scRNA-seq methods herald a single-cell era in plant research. Presented here is a robust and complete procedure for isolating specific Arabidopsis thaliana root cell types and subsequent transcriptome library construction and analysis.

Streszczenie

In multicellular organisms, developmental programming and environmental responses can be highly divergent in different cell types or even within cells, which is known as cellular heterogeneity. In recent years, single-cell and cell-type isolation combined with next-generation sequencing (NGS) techniques have become important tools for studying biological processes at single-cell resolution. However, isolating plant cells is relatively more difficult due to the presence of plant cell walls, which limits the application of single-cell approaches in plants. This protocol describes a robust procedure for fluorescence-activated cell sorting (FACS)-based single-cell and cell-type isolation with plant cells, which is suitable for downstream multi-omics analysis and other studies. Using Arabidopsis root fluorescent marker lines, we demonstrate how particular cell types, such as xylem-pole pericycle cells, lateral root initial cells, lateral root cap cells, cortex cells, and endodermal cells, are isolated. Furthermore, an effective downstream transcriptome analysis method using Smart-seq2 is also provided. The cell isolation method and transcriptome analysis techniques can be adapted to other cell types and plant species and have broad application potential in plant science.

Wprowadzenie

Cells are the fundamental unit of all living organisms and perform structural and physiological functions. Although the cells in multicellular organisms show apparent synchronicity, cells of different types and individual cells present differences in their transcriptomes during development and environmental responses. High-throughput single-cell RNA sequencing (scRNA-seq) provides unprecedented power for understanding cellular heterogeneity. Applying scRNA-seq in plant sciences has contributed to successfully constructing a plant cell atlas1, has been used to identify rare cellular taxa in plant tissues2, has provided in....

Protokół

The following protocol has been optimized for A. thaliana wild-type (WT) seeds with no fluorescence and fluorescent marker lines for the following root cell types: xylem-pole pericycle cells (J0121), lateral root initial cells, lateral root cap cells (J3411), endodermis and cortex cells (J0571) (Figure 1A). All the marker lines were obtained from a commercial source (see Table of Materials), except for the lateral root initiation cell marker line, which was generated by introducing a GATA23 promoter-driven GFP construct into a wild-type Arabidopsis plant following a previously published report<....

Wyniki

Protoplast isolation
This protocol is effective for the protoplast sorting of fluorescent A. thaliana root marker lines. These markers lines have been developed by the fusion of fluorescent proteins with genes expressed specifically in target cell types, or using enhancer trap lines (Figure 1). Numerous tissues and organs have been dissected into cell types expressing specific fluorescent markers in model plants and crops.

F.......

Dyskusje

The Smart-seq2-based protocol can generate reliable sequencing libraries from several hundreds of cells8. The quality of the starting material is essential for the accuracy of the transcriptome analysis. FACS is a powerful tool for preparing cells of interest, but this procedure, especially the protoplasting step, must be optimized for plant applications. Laser capture microdissection (LCM) or manual dissected cells can also be used as input25,2.......

Ujawnienia

The authors have nothing to disclose.

Podziękowania

We set up this protocol in the single-cell multi-omics facility of the School of Agriculture and Biology, Shanghai Jiao Tong University, and were supported by the National Natural Science Foundation of China (Grant No. 32070608), the Shanghai Pujiang Program (Grant No. 20PJ1405800), and Shanghai Jiao Tong University (Grant Nos. Agri-X20200202, 2019TPB05).

....

Materiały

NameCompanyCatalog NumberComments
0.22 µm strainerSorfa 622110
AgarYeasen70101ES76
Agilent fragment analyzerAglientAglient 5200
Agilent high-sensitivity DNA kitAglientDNF-474-0500
Ampure XP beadsBECKMANA63881
BetaineyuanyeS18046-100g
BleachMr MuscleFnBn83BK20% (v/v) bleach
BSAsigma9048-46-8
CaCl2yuanyeS24109-500g
Cellulase R10Yakult (Japan)9012-54-8
Cellulase RSYakult (Japan)9012-54-8
Centrifuge tube (1.5 mL)Eppendolf30121589
DNase, RNase, DNA and RNA Away Surface DecontaminantsBeyotimeR0127
dNTPs (10 mM)NEBN0447S
DTT (0.1 M)
invitrogen
18090050
EthanolSinopharm Chemical Reagent Co., Ltd100092680
FACSBD FACS MelodyBD-65745
FACSSonySH800S
Filter tip  (1000 µL)Thermo ScientificTF112-1000-Q
Filter tip  (200 µL)Thermo ScientificTF140-200-Q
Filter tip (10 µL)Thermo ScientificTF104-10-Q
Filter tip (100 µL)Thermo ScientificTF113-100-Q
Fluorescent microscopeNikonEclipse Ni-E
Four-Dimensional Rotating MixerKylin -BellBE-1100
Hemicellulasesigma9025-56-3
IS PCR primer5'-AAGCAGTGGTATCAACGCAGAG
T-3'
KAPA HiFi HotStart ReadyMix(2X)Roche 7958935001
KClSinopharm Chemical Reagent Co., Ltd7447-40-7
Macerozyme R10Yakult (Japan)9032-75-1
Magnetic separation standinvitrogen12321D
Mannitolaladdin69-65-8
MESaladdin145224948
MgCl2 yuanyeR21455-500ml
MicrocentrifugesEppendorfCentrifuge 5425
Micro-mini-centrifugeTitanTimi-10k
MSPhytotechM519
Nextera XT DNA Library Preparation KitilluminaFC-131-1024
oligo-dT30VN primer5'-AAGCAGTGGTATCAACGCAGAG
TACTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTVN-3'
PCR instrumentThermal cyclerA24811
PectolyaseYakult (Japan)9033-35-6
Plant marker linesNottingham Arabidopsis Stock Centre (NASC)
Qubit 1x dsDNA HS Assay KitinvitrogenQ33231
Qubit 2.0 fluorometerinvitrogenQ32866
RNase inhibitor Thermo ScientificEO0382
RNase-free waterinvitrogen10977023
Solution A400 mM mannitol, 0.05 % BSA , 20 mM MES (pH5.7), 10 mM CaCl2, 20 mM KCl
Solution B1 % (w/v)cellulase R10, 1 % (w/v) cellulase RS, 1 %  (w/v)hemicellulase, 0.5 %  (w/v)pectolyase and 1 %  (w/v) Macerozyme R10 of in a fresh aliquot of solution A
Sterile pestleBIOTREAT453463
Strainer (40 µm )Sorfa 251100
Superscript enzyme (200 U/µL)invitrogen18090050
SuperScript VI buffer (5x)invitrogen18090050
T0est tube (5 mL)BD Falcon352052
Thin-walled PCR tubes with caps (0.5 mL)AXYGENPCR-05-C
Triton X-100Sangon BiotechA600198-0500
TSO primer5'-AAGCAGTGGTATCAACGCAGAG
TACATrGrG+G-3'
VortexTitanVM-T2

Odniesienia

  1. Zhang, T. -. Q., Chen, Y., Liu, Y., Lin, W. -. H., Wang, J. -. W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nature Communications. 12 (1), 2053 (2021).
  2. Denyer, T., et al.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Transcriptome AnalysisPlant Cell TypesGene ExpressionFluorescence Activated Cell SortingRN seq AnalysisProtoplast SortingRNA seq Library PreparationArabidopsis ThalianaProtoplasting SolutionsCell SortingFACS MachineFluorescence ChannelsSorting GateMulti omic Approaches

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone