This protocol describes how chromatin immunoprecipitation (ChIP) is used to study the dynamic alterations to the chromatin template that regulate transcription induced by a signal transduction pathway.
Insonation of microbubbles is a promising strategy for tumor ablation at reduced time-averaged acoustic powers, as well as for the targeted delivery of therapeutics. The purpose of the present study is to develop low duty cycle ultrasound pulsing strategies and nanocarriers to maximize non-thermal microvascular ablation and payload delivery to subcutaneous C6 gliomas.
A phage display library was used to identify peptide sequences that target bone. The objective was to investigate the effect of these peptides on mesenchymal cell differentiation and to determine their effect on bone regeneration.
NADPH oxidase is the major source of reactive oxygen species (ROS) in phagocytes. Because of the ephemeral nature of ROS, it is difficult to measure and monitor ROS levels in living animals. A minimally invasive method for serial quantification of ROS in living mice is described.
This article describes a simple model for stimulating angiogenesis in the rat mesentery. The model produces dramatic increases in capillary sprouting, vascular area and vascular density over a relatively short time course in a tissue that allows en face visualization of entire microvascular networks down to the single cell level.
Gas Chromatography (GC) with Flame-Ionization Detection
Calibration Curves
Ultraviolet-Visible (UV-Vis) Spectroscopy
Sample Preparation for Analytical Characterization
Internal Standards
Capillary Electrophoresis (CE)
Ion-Exchange Chromatography
We demonstrate a novel arterial ligation model in murine spinotrapezius muscle, including a step-by-step procedure and description of required instrumentation. We describe the surgery and relevant outcome measurements relating to vascular network remodeling and functional vasodilation using intravital and confocal microscopy.
Establishing primary endometrial stromal cell culture systems from hysterectomy specimens is a valuable biological technique and a crucial step prior to pursuing a vast array of research aims. Here, we describe two methods used to establish stromal cultures from surgically resected endometrial tissues of human patients.
We describe a Xenopus oocyte and animal cap system for the expression cloning of genes capable of inducing a response in competent ectoderm, and discuss techniques for the subsequent analysis of such genes. This system is useful in the functional identification of a wide range of gene products.
This paper describes a method for the measurement of fuel oxidation in Drosophila melanogaster in which trace amounts of specific radiolabeled metabolic substrates are fed to flies. The exhaled radiolabeled CO2 that is a produced from fuel oxidation is collected and measured.
This article describes a protocol for visualizing amyloid Aβ plaques in Alzheimer's disease mouse models using methoxy-X04, which crosses the blood-brain barrier and selectively binds to β-pleated sheets found in dense core Aβ plaques. It allows pre-screening of plaque-containing tissue sections prior to immunostaining and processing for electron microscopy.
Hematopoietic stem and progenitor cells (HSPC) derive from specialized (hemogenic) endothelial cells during development, yet little is known about the process by which some endothelial cells specify to become blood forming. We demonstrate a flow-cytometry based method allowing simultaneous isolation of hemogenic endothelial cells and HSPC from murine embryonic tissues.
We describe an in vivo protocol to measure dorsiflexion of the foot following stimulation of the peroneal nerve and contraction of the anterior crural compartment of the rat hindlimb. Such measurements are an indispensable translational tool for evaluating skeletal muscle pathology and tissue engineering approaches to muscle repair and regeneration.
Using a lipophilic 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) staining technique, Ambystoma mexicanum can undergo vascular perfusion to allow for easy visualization of the vasculature.
This protocol describes real-time iontophoresis, a method that measures physical parameters of the extracellular space (ECS) of living brains. The diffusion of an inert molecule released into the ECS is used to calculate the ECS volume fraction and tortuosity. It is ideal for studying acute reversible changes to brain ECS.
This protocol was developed to quantitatively identify tumor microenvironment components in glioblastoma patient resections using chromogenic immunohistochemistry and ImageJ.
This protocol describes an approach for manufacturing aligned steel fiber reinforced cementitious composite by applying a uniform electromagnetic field. Aligned steel fiber reinforced cementitious composite exhibits superior mechanical properties to ordinary fiber reinforced concrete.
We propose a standardized protocol to characterize the cellular composition of late-stage murine atherosclerotic lesions including systematic methods of animal dissection, tissue embedding, sectioning, staining, and analysis of brachiocephalic arteries from atheroprone smooth muscle cell lineage tracing mice.
3D single-molecule localization microscopy is utilized to probe the spatial positions and motion trajectories of fluorescently labeled proteins in living bacterial cells. The experimental and data analysis protocol described herein determines the prevalent diffusive behaviors of cytosolic proteins based on pooled single-molecule trajectories.
This protocol describes a step-by-step workflow for immunofluorescent costaining of IBA1 and TMEM119, in addition to analysis of microglial density, distribution, and morphology, as well as peripheral myeloid cell infiltration in mouse brain tissue.
Here we present a protocol to study the in vivo localization of antibodies in mice tumor xenograft models.
Mouse (Mus Musculus) models are being widely used to develop xenografts using human leukemia cells. These models provide a comparable biological system to study drug efficacy, pharmacodynamics, and pharmacokinetics. Modeling acute myeloid leukemia in immunocompromised mice is described in detail using the U937 cell line xenograft as an example.
Here we describe a method for retroviral overexpression and adoptive transfer of murine B-1a cells to examine in vivo B-1a cell migration and localization. This protocol can be extended for diverse downstream functional assays including quantification of donor B-1a cell localization or analysis of donor cell-derived secreted factors post-adoptive transfer.
This protocol describes use of a walking simulator that serves as a safe and ecologically valid method to study pedestrian behavior in the presence of moving traffic.
The goal of the protocol is to provide a method for producing non-invasive neuronal lesions in the brain. The method utilizes Magnetic Resonance-guided Focused Ultrasound (MRgFUS) to open the Blood Brain Barrier in a transient and focal manner, in order to deliver a circulating neurotoxin to the brain parenchyma.
This manuscript describes a method for continuous video EEG recordings using multiple depth electrodes in neonatal mice undergoing hypoxia-ischemia.
This protocol describes a chronic cranial window implantation technique that can be used for longitudinal imaging of neuro-glio-vascular structures, interactions, and function in both healthy and diseased conditions. It serves as a complementary alternative to the transcranial imaging approach that, while often preferred, possesses some critical limitations.
The goal of this protocol is to synthesize fluorescently-labeled liposomes and use flow cytometry to identify in vivo localization of liposomes at a cellular level.
Presented here is a simple protocol for the directed differentiation of hemogenic endothelial cells from human pluripotent stem cells in approximately 1 week.
This report describes the methods to generate a model of temporal lobe epilepsy based on the electrical kindling of transgenic VGAT-Cre mice. Kindled VGAT-Cre mice may be useful in determining what causes epilepsy and for screening novel therapies.
This protocol describes a method for the isolation of murine postnatal retinal endothelial cells optimized for cell yield, purity, and viability. These cells are suitable for next-generation sequencing approaches.
A method to reactivate quiescent neural stem cells in cultured Drosophila brain explants has been established. Using this method, the role of systemic signals can be uncoupled from tissue-intrinsic signals in the regulation of neural stem cell quiescence, entry and exit.
The present protocol describes the construction of custom-made microelectrode arrays to record local field potentials in vivo from multiple brain structures simultaneously.
The present protocol describes a facile technique for the intravital imaging of the lactating mouse mammary gland by laser scanning confocal and multiphoton microscopy.
This protocol describes a set of methods for synthesizing the microgel building blocks for microporous annealed particle scaffold, which can be used for a variety of regenerative medicine applications.
This protocol describes a method for eukaryotic polysome purification from intact soybean nodules. After sequencing, standard pipelines for gene expression analysis can be used to identify differentially expressed genes at the transcriptome and translatome levels.
Pelvic organ prolapse affects millions of women worldwide and yet some common surgical interventions have failure rates as high as 40%. The lack of standard animal models to investigate this condition impedes progress. We propose the following protocol as a model for uterosacral ligament suspension and in vivo tensile testing.
The present protocol outlines the steps for aligning in vivo visible-light optical coherence tomography fibergraphy (vis-OCTF) images with ex vivo confocal images of the same mouse retina for the purpose of verifying the observed retinal ganglion cell axon bundle morphology in the in vivo images.
Hyperpolarized 129Xe magnetic resonance imaging (MRI) is a method for studying regionally resolved aspects of pulmonary function. This work presents an end-to-end standardized workflow for hyperpolarized 129Xe MRI of lung ventilation, with specific attention to pulse sequence design, 129Xe dose preparation, scan workflow, and best practices for subject safety monitoring.
Volumetric muscle loss (VML) injuries exceed endogenous regenerative ability, resulting in permanent functional deficits. Current VML research primarily focuses on limb and trunk muscles. To extend mechanistic studies of VML to craniofacial muscles, this article describes an in vivo method for longitudinal assessment of masseter muscle function pre- and post-VML injury.
This protocol describes a method to obtain in vivo, high-density single-neuron recordings from the brainstem of head-fixed mice. This approach is deployed to measure the action potential firing of neurons in the ventrolateral periaqueductal gray - a brainstem region inactive during Rapid Eye Movement (REM) sleep - before and during general anesthesia.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados