É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Aqui, apresentamos um protocolo para avaliar o resultado da aplicação de luz vermelha sobre o crescimento de biofilmes de Candida albicans . Um dispositivo não-coerente de luz vermelha com comprimento de onda de 635 nm e densidade de energia de 87,6 J·cm-2 foi aplicado durante todo o crescimento de biofilmes de Candida albicans por 48 h.
Aqui, apresentamos um protocolo para avaliar os resultados das diárias de luz vermelha tratamento sobre o crescimento de biofilmes de Candida albicans . Para aumentar o crescimento planctônico de SN425 de c. albicans , o inoculo cresceu na mídia de levedura Base de nitrogênio. Para a formação de biofilme, mídia RPMI 1640, que têm altas concentrações de aminoácidos, foram aplicadas para ajudar o crescimento do biofilme. Biofilmes de 48 h foram tratadas duas vezes por dia por um período de 1 min com um dispositivo de luz não-coerente (luz vermelha; comprimento de onda = 635 nm; densidade de energia = 87,6 J·cm-2). Como um controle positivo (PC), clorexidina 0,12% (CHX) foi aplicado e como um controle negativo (NC), 0,89% NaCl foi aplicado para os biofilmes. Formadoras de colónias (UFC), unidades de peso seco, solúveis e insolúveis exopolissacarídeo foram quantificados depois dos tratamentos. Resumidamente, o protocolo aqui apresentado é simples, Reproduzível e fornece respostas sobre viabilidade, montantes de polissacarídeo extracelular e de peso seco após o tratamento de luz vermelha.
O aumento da incidência de diabetes, aplicações de terapia imunossupressora, infecção pelo HIV, a epidemia de AIDS, procedimentos clínicos invasivos e consumo antibiótico de largo espectro nos últimos anos tem aumentado a incidência de Candida albicans relacionados com doenças1,2. Infecções de c. albicans são comumente relacionadas ao desenvolvimento de biofilme e podem causar manifestações clínicas, tais como candidíase, ou manifestações sistêmicas, tais como candidemia1,2. Dentre os fatores de virulência, mais notáveis do crescimento do biofilme é o estabelecimento de matriz de polissacarídeo extracelular. Formação de biofilmes coopera para aumentar a resistência a drogas antifúngicas existentes, estresse ambiental e de mecanismos imunes do hospedeiro3.
O crescimento de biofilmes de c. albicans começa com a adesão inicial de células planctônicas a um substrato, seguido pela propagação de células de levedura através da superfície do substrato e o crescimento das hifas. A última fase do crescimento do biofilme é a fase de maturação, no qual desenvolvimento de leveduras, como é suprimido, o desenvolvimento das hifas expande e a matriz extracelular inclui o biofilme4. C. albicans exopolissacarídeo (EPS) na matriz interage para formar o complexo5,de Medeiros-glucan6. A interação de exopolissacarídeo é fundamental para a defesa dos biofilmes contra drogas7. Daí, a redução dos EPS da matriz extracelular de c. albicans pode apoiar o desenvolvimento de novos protocolos de antibiofilm para controle da candidíase oral.
Luz regula o crescimento, desenvolvimento e comportamento de vários organismos8 e foi aplicado como um antimicrobiano da quimioterapia fotodinâmica antimicrobiana (Pacto). Pacto aplica-se uma luz visível de um comprimento de onda específico e uma absorção de luz fotossensibilizador9. No entanto, os fotossensibilizadores têm dificuldades em penetrar o biofilme, causando menor eficácia10. O fracasso de agentes terapêuticos para infiltrar totalmente biofilmes é uma razão que biofilmes ocasionalmente resistem tradicional terapia antimicrobiana3,5. Para desactivar as células microbianas fechadas, antimicrobianos precisam permear através da matriz extracelular; Não obstante, o EPS caracteriza um obstáculo de difusão para tais moléculas alertando o seu nível de transporte para o biofilme ou influenciando a resposta do antimicrobiano com a própria matrix11.
Tendo em conta as desvantagens do Pacto, o uso da luz por si só emerge como uma melhoria valiosa. Dados preliminares revelaram que o tratamento com luz azul duas vezes por dia inibiu significativamente a produção de EPS-insolúvel em biofilmes de Streptococcus mutans . Pela diminuição de EPS-insolúvel, luz azul diminuiu o crescimento do biofilme. No entanto, os resultados da fototerapia usando luz vermelha em biofilmes de c. albicans são escassos. Portanto, o objetivo desta investigação foi avaliar em que fototerapia de maneira usando luz vermelha influencia o crescimento e o arranjo de biofilmes de c. albicans . Para o tratamento duas vezes por dia, adaptamos anterior protocolos9,12 para fornecer um modelo de biofilme fácil e reprodutíveis que fornece respostas sobre viabilidade, do nosso laboratório peso seco e extracelulares polissacarídeos quantidades após o tratamento de luz vermelha. O mesmo protocolo pode ser usado para testar outras terapias.
1. preparação de meios de cultura
2. pré-inóculo e inóculo
3. fototerapia e formação de biofilmes
4. processamento
Figura 2 exibe os resultados de Log10 UFC/mL de c. albicans após tratamentos diários com luz vermelha para luz vermelha de 1 min. reduziu significativamente o Log10 UFC/mL em comparação com o NC (p = 0,004). A Figura 3 apresenta os resultados da biomassa (mg) de biofilmes de c. albicans após tratamentos diários. Todos tratados grupos apresentaram redução da biomassa em comparação ...
Os passos mais críticos para um cultivo bem sucedido de biofilmes de c. albicans são: 1) para fazer o pre- inóculo de e o inóculo em meio YNB complementado com glicose de 100 mM; 2) para esperar 90 min para a fase de adesão e cuidadosamente lavar duas vezes os poços com 0,89% NaCl para remover as células não-aderido; e 3) para adicionar meio RPMI às células aderidas para iniciar a formação de biofilmes, desde RPMI estimulará o crescimento de hifas. Aneuploidies pode ocorrer quando o cultivo de ...
Os autores não têm nada para divulgar.
Agradecemos o Dr. Paula da Silveira, Dr. Cecília Atem Gonçalves de Araújo Costa, Shawn M. Maule, Shane M. Maule, Dr. N. Malvin Janal e Dr. Iriana Zanin para o desenvolvimento deste estudo. Reconhecemos também o Dr. Alexander m. Johnson (UCSF) para doar a estirpe analisada neste estudo.
Name | Company | Catalog Number | Comments |
Clorhexidine 20% | Sigma-Aldrich | C9394 | |
Dextrose (D-Glucose) Anhydroous | Fisher Chemical | D16-500 | |
Ethanol 200 proof | Decon Laboratories | DSP-MD.43 | |
LumaCare LC-122 A | LumaCare Medical Group, Newport Beach, CA, USA | ||
NaCl | Fisher Chemical | S641-500 | |
NaOH | Fisher Bioreagents | BP 359-500 | |
Phenol 5% | Milipore Sigma | 843984 | |
RPMI 1640 buffered with 3-(N-morpholino) | Sigma | R7755 | |
Sabouraud dextrose agar supplemented with chloramphenicol | Acumedia | 7306A | |
Sulfuric acid | Fisher Chemical | SA200-1 | |
Yeast nitrogen base | Difco | DF0392-15-9 | |
3-(N-morpholino)propanesulfonic acid MOPS | Sigma-Aldrich | M1254 | |
24-well polystyrene plate | Falcon | 353935 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados