Method Article
Недавно мы сообщали о новом подходе для создания флуорогенных зондов DNAzyme которые могут быть применены для создания простых, "сочетание и читать" флуоресцентный тест для обнаружения бактериальной. Эти специальные ДНК-зонды катализируют расщепление хромофора модифицированных ДНК-РНК химерных субстрата в присутствии внеклеточных сырой смеси (CEM) производства конкретных бактерий, тем самым переводя бактериальных обнаружения флуоресценции в поколение сигнала. В этом докладе мы опишем основной экспериментальной процедуры, когда конкретный зонд DNAzyme обозначается "RFD-EC1" используется для определения модели бактерии, Кишечной палочки (E.coli).
Outbreaks linked to food-borne and hospital-acquired pathogens account for millions of deaths and hospitalizations as well as colossal economic losses each and every year. Prevention of such outbreaks and minimization of the impact of an ongoing epidemic place an ever-increasing demand for analytical methods that can accurately identify culprit pathogens at the earliest stage. Although there is a large array of effective methods for pathogen detection, none of them can satisfy all the following five premier requirements embodied for an ideal detection method: high specificity (detecting only the bacterium of interest), high sensitivity (capable of detecting as low as a single live bacterial cell), short time-to-results (minutes to hours), great operational simplicity (no need for lengthy sampling procedures and the use of specialized equipment), and cost effectiveness. For example, classical microbiological methods are highly specific but require a long time (days to weeks) to acquire a definitive result.1 PCR- and antibody-based techniques offer shorter waiting times (hours to days), but they require the use of expensive reagents and/or sophisticated equipment.2-4 Consequently, there is still a great demand for scientific research towards developing innovative bacterial detection methods that offer improved characteristics in one or more of the aforementioned requirements. Our laboratory is interested in examining the potential of DNAzymes as a novel class of molecular probes for biosensing applications including bacterial detection.5
DNAzymes (also known as deoxyribozymes or DNA enzymes) are man-made single-stranded DNA molecules with the capability of catalyzing chemical reactions.6-8 These molecules can be isolated from a vast random-sequence DNA pool (which contains as many as 1016 individual sequences) by a process known as "in vitro selection" or "SELEX" (systematic evolution of ligands by exponential enrichment).9-16 These special DNA molecules have been widely examined in recent years as molecular tools for biosensing applications.6-8
Our laboratory has established in vitro selection procedures for isolating RNA-cleaving fluorescent DNAzymes (RFDs; Fig. 1) and investigated the use of RFDs as analytical tools.17-29 RFDs catalyze the cleavage of a DNA-RNA chimeric substrate at a single ribonucleotide junction (R) that is flanked by a fluorophore (F) and a quencher (Q). The close proximity of F and Q renders the uncleaved substrate minimal fluorescence. However, the cleavage event leads to the separation of F and Q, which is accompanied by significant increase of fluorescence intensity.
More recently, we developed a method of isolating RFDs for bacterial detection.5 These special RFDs were isolated to "light up" in the presence of the crude extracellular mixture (CEM) left behind by a specific type of bacteria in their environment or in the media they are cultured (Fig. 1). The use of crude mixture circumvents the tedious process of purifying and identifying a suitable target from the microbe of interest for biosensor development (which could take months or years to complete). The use of extracellular targets means the assaying procedure is simple because there is no need for steps to obtain intracellular targets.
Using the above approach, we derived an RFD that cleaves its substrate (FS1; Fig. 2A) only in the presence of the CEM produced by E. coli (CEM-EC).5 This E. coli-sensing RFD, named RFD-EC1 (Fig. 2A), was found to be strictly responsive to CEM-EC but nonresponsive to CEMs from a host of other bacteria (Fig. 3).
Here we present the key experimental procedures for setting up E. coli detection assays using RFD-EC1 and representative results.
1. Подготовка химических растворов
2. Строительство RFD-EC1 и RFSS1 по шаблону опосредовано ферментативного лигирования
RFD-EC1 (рис. 2) является признакам DNAzyme. Он состоит из каталитического EC1 последовательность и подложки последовательность FS1 (показано черными и зелеными линиями на рис. 2А). RFSS1 (рис. 2) представляет собой зашифрованный версия RFD-EC1 где каталитического EC1 последовательность частично перемешиваются в SS1 но FS1 часть остается неизменной. RFD-EC1 и RFSS1 были сделаны по шаблону опосредовано ферментативного лигирования олигонуклеотидов FS1 с олигонуклеотидом EC1 или SS1 в присутствии LT1 как перевязка шаблон (см. вставлены окна на рис. 2А). Порядок проведения реакции лигирования приводится ниже.FS1 была получена из Услуги Кек Oligo Синтез Йельского университета, снимают защиту и очищали с помощью гель-электрофореза после ранее установленным протоколом. 17-24 EC1, SS1 и LT1 были приобретены интегрированные технологии ДНК и очищали с помощью гель-электрофореза.
3. Подготовка 10% dPAGE гель
Ниже кратко описаны аппарат электрофореза и его настройки. Для большей информации о аппарата, настройки и обработки, пожалуйста, обращайтесь тО наших ранее опубликованных протоколов. 30,31
4. Очистка лигировали RFD-EC1 и RFSS1 на 10% dPAGE гель
5. Подготовка бактерии
6. Подготовка сырой внеклеточной смесей (ПОВ)
7. Обнаружение с помощью флуоресцентной спектрофотометр
8. Обнаружение помощью гель-электрофореза
То же реакционные смеси, подготовленный в шаге 7,4 могут быть использованы для анализа с помощью гель-электрофореза; альтернативно новые реакции могут быть получены так же и инкубировали в пробирки на 1,5 мл микроцентрифужных. В любом случае:
9. Обнаружение Специфика
10. Одноместный обнаружения сотового
Подготовить 1 мл E. палочки глицерин акции 2 КОЕ / мл (КОЕ: колониеобразующих единицы) от серийного разведения и подтвердить КОЕ концентрации покрытие 5 Эта акция должна содержать 0,2 CFU/100 мкл.. Хранить при температуре от -80 ° C до использования.
11. Концепция и представитель Результаты
Концепция использования РНК-расщепляющих люминесцентные DNAzyme (RFD) для бактериальных обнаружения показан на рис. 1. RFD расщепляет химерных ДНК / РНК субстрат на одинокого РНК связи (синий R) в сопровождении двух нуклеотидов помеченыс флуорофора (F) и гасителем (Q), соответственно. Как бактерии интерес (например, кишечная палочка) растет в средствах массовой информации, он оставит позади сырой внеклеточной смеси (CEM). Это CEM в целом, то, используемые в эксперименте на лабораторных выбор для получения RFD, отвечающей специально для CEM, предположительно RFD взаимодействует с определенным молекулы (фиолетовая звезда) в CEM это подпись молекулы бактерии. Когда CEM добавляется в раствор, содержащий реакцию RFD, это вызывает РНК-расщепляющих деятельности RFD. Расщепление событие отделяет F от Q, в результате флуоресцентный сигнал, который может быть обнаружен, либо используя флуориметра или гель-электрофореза.
Экспериментальная проверка над концепцией было сделано с CEM из E. палочки (CEM-ЕС). Мы получили 3 RFD молекул через выбор в пробирке, и наиболее эффективным был назначен RFD-EC1 (рис. 2). 5 Втэлектронной испытания расщепления деятельности RFD-EC1 (вместе с мутантом последовательность имени RFSS1) в ответ на CEM-ЕС. Оба RFD-EC1 и RFSS1 были подготовлены ферментативного лигирования DNAzyme части к основанию FS1 (все последовательности показан на рис. 2А). В флуоресценции эксперименте измерений (рис. 2В), CEM-ЕС инкубировали только в течение 5 минут, с последующим добавлением в RFD-EC1 или RFSS1, а также дальнейшей инкубации в течение 55 минут больше. Интенсивность флуоресценции раствора непрерывно читать каждую минуту, и данные были использованы для расчета относительной флуоресценции (РФ, рассчитываемый как отношение интенсивности флуоресценции в момент т против интенсивности флуоресценции во время 0). РФ против значения времени инкубации приведены на рис. 2B. Было установлено, что RFD-EC1 производства высокого уровня флуоресцентного сигнала при добавлении CEM-ЕС, в противоположность этому, RFSS1 не производит сильного сигнала флуоресценции. Таким образом, флуоресценция производству фуемки по RFD-EC1 на контакт CEM-ЕС является последовательностью конкретных.
Для того, чтобы убедиться, что наблюдаемое увеличение флуоресценции связаны с расщеплением связи РНК, мы проанализировали реакцию смесей dPAGE. Расщепление RFD-EC1, как ожидается, генерировать два фрагмента ДНК, 5 'фрагмент сохраняя флуорофора и 3' фрагмента сохранить утоления. Только нерасщепленного RFD-EC1 (unclv) и 5 'фрагмент (CLV), могут быть обнаружены с помощью флуоресценции. DPAGE результат, показанный на рис. 2C показывает, что реакция смеси RFD-EC1 и CEM-ЕС действительно дали ожидаемых продуктов расщепления, а RFSS1/CEM-EC смеси не было.
Специфика RFD-EC1 были изучены с помощью ПОВ собраны из ряда других грамотрицательных и грамположительных бактерий, и данные приведены на рис. 3А. Только образца, содержащего CEM-EC (синяя кривая) производится увеличение флуоресценции. Отсутствие перекрестной реактивности с ПОВот других бактерий указывает, что RFD-EC1 обладает высокой избирательностью в отношении E. палочка.
Мы также рассмотрели время, необходимое для выращивания одного E. кишечной клетки для того, чтобы производить достаточное CEM, которые могут вызвать расщепление RFD-EC1. Для этого эксперимента, Е. палочки образца, содержащего определенный КОЕ (колониеобразующих единиц) было достаточно, разбавляли для достижения концентрации 1 КОЕ / мл. За этим последовал путем смешивания 100 мкл разбавленного образца с бактериальной питательной среды и культивирование его на 4, 8, 12, 16 и 24 часов. ПОВ затем были собраны для каждого timepoint и протестированы для стимуляции расщепления деятельности RFD-EC1. DPAGE результат, показанный на рис. 3B показывает, что культивирование время 12 часов не требуется.
Важно отметить, что небольшое увеличение начального сигнала, наблюдаемого на флуоресцентных измерений после добавления RFSS1 последовательности (в качестве отрицательного контроля) в CEM-EC (рис. 2, б, красный curvе) или RFD-EC1 других бактериальных ПОВ (рис. 3В, все кривые, за исключением синего) относится к собственной флуоресценции модуля FRQ (в связи с неполным тушения F на Q). Таким образом, ожидается, что добавление F-и Q-меченных последовательности будет производить начальное увеличение флуоресценции. Тем не менее, только RFD-EC1/CEM-EC смеси способны производить высокий уровень флуоресценции с течением времени.
Рисунок 1. Схематическое изображение РНК-расщепляющих люминесцентные DNAzyme (RFD) зонд, который флуоресцирует при контакте с сырой внеклеточной смеси (CEM) производства конкретных бактериальных клеток, представляющих интерес. RFD расщепляет химерных ДНК / РНК субстрат на одинокого РНК связи (синий R) в сопровождении двух нуклеотидов, меченных флуорофора (F) и гасителем (Q), соответственно. Перед реакции расщепления, уровень флуоресценции в RFD является минимальным благодаря тесному близость Р и Q. После расщепления, Q отличается от F, в результате сильного флуоресцентного сигнала производится.
Рисунок 2. Е. палочки зондирования РД. (A) RFD-EC1 является DNAzyme зонд, который может быть активирован CEM-ЕС. RFSS1 это зашифрованная последовательность RFD-EC1 использовали в качестве контроля. RFD-EC1 и RFSS1 были произведены путем лигирования FS1 с EC1 и SS1, соответственно, в присутствии LT1 в качестве шаблона. F: флуоресцеин модифицированных дезокситимидина. Вопрос: Dabcyl модифицированных дезокситимидина. R: аденин рибонуклеотид. (B) флуоресценции сигнализации профили RFD-EC1 и RFSS1 в присутствии CEM-ЕС. (C) dPAGE анализ реакции расщепления смесей в B (время реакции: 60 мин.) На фото это флуоресценции образ dPAGE геля, полученного с сканером Typhoon. Лейн NC: RFD-EC1 или RFSS1 в реакции буфера в одиночку, пер CEM-ЕС: RFD-EC1 или RFSS1 в реакции буфер, содержащий CEM-ЕС. Маркер: RFD-CE1 лечение с 0,25 N NaOH, процедура как известно, вызывает полное расщепление РНК. unclv: нерасщепленного RFD-EC1. CLV: расщепление фрагмента, содержащего флуорофора.
Рисунок 3. (A) флуоресценции сигнализации профиля RFD-EC1 в ПОВ приготовленные из различных бактериальных клеток. ЕС: кишечная палочка-K12, ПП: Pseudomonas Peli, BD: Brevundimonas diminuta; HA: Hafnia alvei, YR: Yersinia ruckeri; О.Г.: Ochrobactrum grignonese; AX: Achromobacter xylosoxidans, MO: Moraxella osloensis; AI: Acinetobacter lwoffi; СФ: Serratia fonticola, BS: Сенная палочка, Л.М. Leuconostoc mesenteroides, LP: Lactobacillus planturum, PA: Pediococcus acidilactici, АО: Actinomyces восточная. Каждый образец CEM инкубировали в течение 5 мин с последующим добавлением в RFD-EC1. (B) dPAGEАнализ RFD-EC1/CEM-EC смеси после 60-минутной реакции. Лейн НС1: RFD-EC1 в реакции буфера в одиночку. Лейн НС2: RFD-EC1 в реакции буфер, содержащий CEM-BS (CEM приготовленные из Сенная палочка). Полос с надписью 4, 8, 12, 16 и 24: RFD-EC1 в реакции буфер, содержащий CEM-ЕС взяты из бактериальной культуры, содержащие один E. кишечной клетки после вегетационного периода 4, 8, 12, 16 и 24 ч соответственно.
Большинство общих методов обнаружения бактериальной сегодня либо медленно (классический микробных) или технически сложных (антитела, ПЦР). Таким образом, мы считаем, что новое поколение средств обнаружения должно удовлетворить на скорость и простоту. С этой целью мы создали РНК-раскалывания и флуоресценции сигнализации DNAzyme которые могут быть использованы для разработки простых тестов, чтобы сообщить о наличии бактерий через поколение сигнала флуоресценции. Рекомендуемые DNAzyme зонд, RFD-EC1, активируется CEM производятся в процессе роста E. палочки в культуре средств массовой информации. Так как наш метод использует сырье внеклеточной смеси бактерий в качестве целевого обнаружения и обходит трудоемкая добыча цели и усиление шагов, он может быть использован для создания очень простая, "сочетание и читать" типа тестов для выявления бактериальных. Использование наших DNAzyme не ограничивается флуоресценции на основе метода обнаружения. Например, колориметрический обнаружения с использованием той же системы DNAzyme анализ сбыть разработаны с использованием ранее метод, который использует прокатки усиления круга в сочетании с органическим красителем 32. Мы предвидим использования DNAzymes для обнаружения бактериальных как привлекательный путь к созданию новых бактериальных биосенсоров с большей простотой эксплуатации.
Нет конфликта интересов объявлены.
Финансирование этой работы была предоставлена естественным наукам и инженерным исследованиям Совета Канады (NSERC) и биологически активных Страж сети бумаги.
Name | Company | Catalog Number | Comments |
Название реагента | Компания | Номер по каталогу или модели | |
Агар | BioShop Канаде | AGR003 | |
Персульфат аммония (APS) | BioShop Канаде | AMP001 | |
Акриламид / бис-акриламид (40%, 29:1) | BioShop Канаде | ACR004 | |
Борная кислота | BioShop Канаде | BOR001 | |
Bromophenol синий | Sigma-Aldrich | B8026 | |
ЭДТА | EM науки | EXO539-1 | |
HCl | Sigma-Aldrich | 38281 | |
HEPES | Bioshop Канаде | HEP001 | |
LB бульоне | Sigma-Aldrich | L3022 | |
MgCl 2 | EMDХимические вещества | B10149-34 | |
NaCl | BioShop Канаде | SOD002 | |
NaOAc | EMD химическими веществами | SXO255-1 | |
NaOH | EMD химическими веществами | SXO590-1 | |
SDS | BioShop Канаде | SDS001 | |
TEMED | BioShop Канаде | TEM001 | |
Трис-основание | BioShop Канаде | BST666 | |
Твин-20 | Sigma-Aldrich | P9416 | |
Мочевина | BioShop Канаде | URE001 | |
Xylenecyanol FF | Sigma-Aldrich | X4126 | |
ДНК концентратор | Thermo Scientific | Savant ДНК SpeedVac 120 | |
Millex фильтра | Millipore | SLGP033RS | |
Советы гель загрузкой | Диамед | TEC200EX-K | |
ImageQuant программного обеспечения | Молекулярная динамика | Версия 5.0 | |
Kimwipes | Kimberly-Clark Professional | 34705 | |
Мини Vortexer | VWR | 58816-121 | |
Парафильмом | Pechiney пластиковой упаковки | PM996 | |
Чашки Петри | Fisher Scientific | Fisherbrand 08-757-12 | |
Stripettor Plus (Пипетка пушка) | Гранулирование | 07764714 | |
Кварцевые кюветы | Varian Inc | 66-100216-00 | |
Шейкер / инкубатор | New Brunswick Scientific | Классическая серия C24 | |
Тайфун сканер | GE Healthcare | 9200 Переменный режим | |
Центрифугировать | Beckman Coulter | Allegra X22-R | |
УФ-спектрофотометр | Thermo Scientific | GenesysUV 10 | |
Флуоресцентный спектрофотометр | Varian Inc | Кэри затмение |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены