Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Мы используем простые лабораторные инструменты для изучения архитектуры корневой системы (RSA) Arabidopsis и Medicago. Ростки выращивают на гидропонике над сеткой и распределяют с помощью художественной кисти, чтобы выявить RSA. Изображения делаются с помощью сканирования или камеры с высоким разрешением, а затем анализируются с помощью ImageJ для отображения черт.
Всесторонние знания о развитии архитектуры корневой системы растений (RSA) имеют решающее значение для повышения эффективности использования питательных веществ и повышения устойчивости сортов сельскохозяйственных культур к экологическим проблемам. Представлен экспериментальный протокол для настройки гидропонной системы, роста ростков, распространения RSA и визуализации. В подходе использовалась пурпурная коробчатая гидропонная система, содержащая полипропиленовую сетку, поддерживаемую поликарбонатными клиньями. Экспериментальные условия иллюстрируются оценкой RSA проростков при различном поступлении питательных веществ (фосфатов [Pi]). Система была создана для изучения RSA Arabidopsis, но ее легко адаптировать для изучения других растений, таких как Medicago sativa (люцерна ). Проростки Arabidopsis thaliana (Col-0) используются в этом исследовании в качестве примера для понимания растения RSA. Семена стерилизуют путем обработки этанолом и разбавленным коммерческим отбеливателем и выдерживают при температуре 4 ° C для стратификации. Семена проращивают и выращивают на жидкой полуМС среде на полипропиленовой сетке, поддерживаемой поликарбонатными клиньями. Ростки выращивают в стандартных условиях роста в течение желаемого количества дней, аккуратно вынимают из сетки и погружают в водосодержащие агаровые пластины. Каждая корневая система ростков аккуратно выкладывается на заполненную водой тарелку с помощью круглой художественной кисти. Эти пластины Петри фотографируются или сканируются с высоким разрешением, чтобы задокументировать признаки RSA. Корневые признаки, такие как первичный корень, боковые корни и зона ветвления, измеряются с помощью свободно доступного программного обеспечения ImageJ. В этом исследовании представлены методы измерения характеристик корней растений в контролируемых условиях окружающей среды. Мы обсудим, как (1) выращивать ростки, собирать и распространять образцы корней, (2) получать изображения распространенных образцов RSA, (3) захватывать изображения и (4) использовать программное обеспечение для анализа изображений для количественной оценки корневых атрибутов. Преимущество настоящего метода заключается в универсальном, простом и эффективном измерении признаков RSA.
Архитектура корневой системы (RSA), находящаяся под землей, является жизненно важным органом для роста и продуктивности растений 1,2,3. После эмбриональной стадии растения претерпевают наиболее значительные морфологические изменения. То, как корни растут в почве, сильно влияет на рост частей растений над землей. Рост корней является первым шагом в прорастании. Это информативная черта, поскольку она однозначно реагирует на различные доступные питательные вещества 1,2,3,4.
Весь протокол схематично изложен на рисунке 1, показывая все основные этапы, связанные с выявлением архитектуры корневой системы (RSA) проростков. Шаги протокола подробно описаны ниже:
1. Стерилизация поверхности семян арабидопсиса
Различные морфометрические признаки архитектуры корневой системы (RSA) измеряются с помощью простых лабораторных инструментов, а этапы схематично изображены на рисунке 1. Детали гидропонной установки демонстрируют потенциал протокола в измерении RSA (рис. 1 и ?.......
Эта работа продемонстрировала картографирование RSA с использованием простого лабораторного оборудования. С помощью этого метода регистрируются фенотипические изменения на уточненном уровне. Преимущество этой стратегии заключается в том, что часть побегов никогда не соприкасается с.......
Авторы заявляют об отсутствии конфликта интересов.
Мы выражаем благодарность Министерству сельского хозяйства США (грант 58-6406-1-017) за поддержку этого исследования. Мы также выражаем признательность Биотехнологическому центру WKU, Университету Западного Кентукки, Боулинг-Грин, штат Кентукки, США, и директору Центрального института лекарственных и ароматических растений CSIR, Лакхнау, Индия, за предоставление инструментального оборудования и поддержки (рукописное сообщение CSIR CIMAP No CIMAP/PUB/2022/103). SS признает финансовую поддержку со стороны Университета Святого Иосифа, Филадельфия, США.
....Name | Company | Catalog Number | Comments |
Arabidospsis thaliana (Col 0) | Lehle Seeds | WT-02 | Columbia (Col-0**, no markers)* |
Art brushes | Amazon or any other vendor | Water color round brush size no. 14 (8 mm), 16 (9.5 mm), 18 (12 mm), and 20 (14.2 mm) | |
Automated Microscope with digital camera | Leica Microsystems | LAS version 4.12.0, Leica Microsystems | |
Imaging Software | ImageJ | ImageJ V 1.8.0 | |
Magenta box GA-7 | Fisher Scientific | 50-255-176 | |
Medicago sativa | Johnny's Seeds | ||
Petri-plate (150 mm x 15 mm) | USA Scientific | 8609-0215 | 150 mm x 15 mm PS Petri Dish (https://www.usascientific.com) |
Photo camera | Cannon or Nikon | Any high mega pixel (atleast 12 mega pixel per inch) camera on macro mode | |
Plant-Agar | Sigma-Aldrich | A3301 | Agargel Suitable for plant tissue culture |
Polycarbonate Sheets | Amazon | 1 mm thick | |
Polypropylene Mesh | Amazon | Pore size 250 µm, 500 µm and 1000 µm | |
Scanner | Epson | Epson Perfection V700 Photo (Scan at 600 dpi) |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены