A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe a protocol for the purification of highly active Hsp104, a hexameric AAA+ protein from yeast, which couples ATP hydrolysis to protein disaggregation. This scheme exploits a His6-tagged construct for affinity purification from E. coli followed by anion-exchange chromatography, His6-tag removal with TEV protease, and size-exclusion chromatography.
Hsp104 is a hexameric AAA+ protein1 from yeast, which couples ATP hydrolysis to protein disaggregation2-10 (Fig. 1). This activity imparts two key selective advantages. First, renaturation of disordered aggregates by Hsp104 empowers yeast survival after various protein-misfolding stresses, including heat shock3,5,11,12. Second, remodeling of cross-beta amyloid fibrils by Hsp104 enables yeast to exploit myriad prions (infectious amyloids) as a reservoir of beneficial and heritable phenotypic variation13-22. Remarkably, Hsp104 directly remodels preamyloid oligomers and amyloid fibrils, including those comprised of the yeast prion proteins Sup35 and Ure223-30. This amyloid-remodeling functionality is a specialized facet of yeast Hsp104. The E. coli orthologue, ClpB, fails to remodel preamyloid oligomers or amyloid fibrils26,31,32.
Hsp104 orthologues are found in all kingdoms of life except, perplexingly, animals. Indeed, whether animal cells possess any enzymatic system that couples protein disaggregation to renaturation (rather than degradation) remains unknown33-35. Thus, we and others have proposed that Hsp104 might be developed as a therapeutic agent for various neurodegenerative diseases connected with the misfolding of specific proteins into toxic preamyloid oligomers and amyloid fibrils4,7,23,36-38. There are no treatments that directly target the aggregated species associated with these diseases. Yet, Hsp104 dissolves toxic oligomers and amyloid fibrils composed of alpha-synuclein, which are connected with Parkinson's Disease23 as well as amyloid forms of PrP39. Importantly, Hsp104 reduces protein aggregation and ameliorates neurodegeneration in rodent models of Parkinson's Disease23 and Huntington's disease38. Ideally, to optimize therapy and minimize side effects, Hsp104 would be engineered and potentiated to selectively remodel specific aggregates central to the disease in question4,7. However, the limited structural and mechanistic understanding of how Hsp104 disaggregates such a diverse repertoire of aggregated structures and unrelated proteins frustrates these endeavors30,40-42.
To understand the structure and mechanism of Hsp104, it is essential to study the pure protein and reconstitute its disaggregase activity with minimal components. Hsp104 is a 102kDa protein with a pI of ~5.3, which hexamerizes in the presence of ADP or ATP, or at high protein concentrations in the absence of nucleotide43-46. Here, we describe an optimized protocol for the purification of highly active, stable Hsp104 from E. coli. The use of E. coli allows simplified large-scale production and our method can be performed quickly and reliably for numerous Hsp104 variants. Our protocol increases Hsp104 purity and simplifies His6-tag removal compared to a previous purification method from E. coli47. Moreover, our protocol is more facile and convenient than two more recent protocols26,48.
1. Expression of Hsp104
2. Cell Harvest and Lysis
3. Hsp104 Purification
4. Hsp104 Disaggregase Activity
5. Hsp104 Storage
6. Representative Results and Figures:
Figure 1. Hsp104 is a Bifunctional disaggregase. Disaggregation of disordered aggregates (shown on left) requires the cooperation of the Hsp70 chaperone system (Hsp70 and Hsp40)2. Hsp104 remodels ordered amyloid aggregates (shown on right) without the aid of Hsp70 and Hsp40 in vitro, but Hsp70 and Hsp40 can improve Hsp104 activity against amyloid26,28. For both types of aggregated structures, Hsp104 couples ATP hydrolysis to substrate translocation through its central channel to promote disaggregation. Tyrosine-bearing pore loops engage and shuttle substrate through the central channel49-52.
Figure 2. SDS-PAGE analysis of Ni-sepharose affinity purification step. Lysate, Ni Load, Ni FT and Ni eluate samples were fractionated by SDS-PAGE using a 4-20% Tris-HCl 1.0mm Criterion gel (Bio-Rad) and Coomassie stained. Note that not all the Hsp104 is able to bind to the Ni-sepharose. Broad Range molecular weight markers (Bio-Rad) are shown (left lane).
Figure 3. Resource Q purification of Ni-sepharose eluate. Blue trace represents absorbance at 280nm and green trace represents % Buffer Q+ (maximum at 50%). The first peak, which elutes at 20% Q+ contains impurities, degradation products and improperly folded Hsp104. The second and major peak contains properly folded and active Hsp104. Flow rate was 1ml/min. Gradient from 20-50% Q+ is 30 minutes or 5 column volumes. Inset: peak fractions are resolved by SDS-PAGE analysis using a 4-20% Tris-HCl 1.0mm Criterion gel (Bio-Rad) and Coomassie stained. Broad Range molecular weight markers (Bio-Rad) are shown (left).
Figure 4. SDS-PAGE analysis of proTEV protease cleavage step. His6-Hsp104 from Resource Q purification was treated with proTEV protease for 4 hours at 30°C and then 16 hours at 4°C. Samples were the fractionated by SDS-PAGE using a 4-20% Tris-HCl 1.0mm Criterion gel (Bio-Rad) and Coomassie stained. Note that proTEV cleaved Hsp104 migrates more rapidly. TEV protease and uncleaved Hsp104 have been depleted with Ni-Sepharose as described in Step 3.7. Broad Range molecular weight markers (Bio-Rad) are shown (left).
Figure 5. Size-exclusion purification of Hsp104. Cleaved Hsp104 was further purified via a Superose 6 gel filtration column (10/300, GE). Flow rate = 0.4ml/min. The peak between the dashed lines represents pooled fractions. Inset: peak fractions are resolved by SDS-PAGE analysis using a 4-20% Tris-HCl 1.0mm Criterion gel (Bio-Rad) and Coomassie stained. Broad Range molecular weight markers (Bio-Rad) are shown (left).
Figure 6. Luciferase reactivation assay. Denatured firefly luciferase aggregates (50nM) were incubated with either Hsp72 and Hsp40 (1μM) (both from Assay Designs), Hsp104 (6μM monomer) or Hsp104, Hsp72 and Hsp40 for 90min at 25°C. Denatured luciferase is only fully reactivated in the presence of both Hsp104 and Hsp40/Hsp72. Recovered luminescence is measured on an Infinite M1000 plate reader (Tecan). Values represent means±SEM (n=3).
Timeline: For maximal Hsp104 activity we recommend that the entire purification scheme be completed as rapidly as possible. However, the number of purification steps makes a demanding schedule that may not always be practical. If the purification steps are carried out as quickly as possible, the time from the end of overnight expression through to the 2-4 hours of incubation at 30°C with TEV protease is approximately 9-11 hours. One potential place to pause is following the TEV cleavage step. If absolutely nec...
No conflicts of interest declared.
This work was supported by a grant from the NIH (5T32GM008275-22) and an American Heart Association predoctoral fellowship (to E.A.S.); a Chemistry-Biology Interface Fellowship from the NIH (2T32GM071339-06A1) (to M.E.D.); and grants from the NIH (1DP2OD002177-01 and NS067354-0110), The Ellison Medical Foundation, and The Bill and Melinda Gates Foundation (to J.S.).
Name | Company | Catalog Number | Comments |
BL21-CodonPlus-RIL Competent Cells | Stratagene, Agilent Technologies | 230255 | |
2XYT broth | USB Corp., Affymetrix | 75864 | |
Complete, mini, EDTA-free protease inhibitor tablets | Roche Group | 1836170 | |
Pepstatin A | Sigma-Aldrich | P4265 | |
Ni-Sepharose 6 Fast Flow | GE Healthcare | 17-5318-02 | |
Amicon Ultra-15 centrifugal filter units (MWCO 30,000) | EMD Millipore | UFC903008 | |
Resource Q - 6ml column | GE Healthcare | 17-1179-01 | |
proTEV Protease | Promega Corp. | V6052 | |
AcTEV Protease | Invitrogen | 12575015 | |
Superose 6 10/300 GL | GE Healthcare | 17-5172-01 | |
Hsp40 | Assay Designs | SPP-400 | |
Hsp72 | Assay Designs | ADI-NSP-555 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved