A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We have developed a novel technique of quantifying nicotinic acetylcholine receptor changes within subcellular regions of specific subtypes of CNS neurons to better understand the mechanisms of nicotine addiction by using a combination of approaches including fluorescent protein tagging of the receptor using the knock-in approach and spectral confocal imaging.
Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain1. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue1-3. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates4-6.
Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons.
Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology7.By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo7-10. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells11.More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer resolution in CNS neurons via spectral confocal microscopy12. The targeted fluorescent knock-in mutation is incorporated in the endogenous locus and under control of its native promoter, producing normal levels of expression and regulation of the receptor when compared to untagged receptors in wildtype mice. This knock-in approach can be extended to fluorescently tag other ion channels and offers a powerful approach of visualizing and quantifying receptors in the CNS.
In this paper we describe a methodology to quantify changes in nAChR expression in specific CNS neurons after exposure to chronic nicotine. Our methods include mini-osmotic pump implantation, intracardiac perfusion fixation, imaging and analysis of fluorescently tagged nicotinic receptor subunits from α4YFP knock-in mice (Fig. 1). We have optimized the fixation technique to minimize autofluorescence from fixed brain tissue.We describe in detail our imaging methodology using a spectral confocal microscope in conjunction with a linear spectral unmixing algorithm to subtract autofluoresent signal in order to accurately obtain α4YFP fluorescence signal. Finally, we show results of chronic nicotine-induced upregulation of α4YFP receptors in the medial perforant path of the hippocampus.
1. Pump implantation
2. α4YFP knock-in mouse fixation by intracardiac perfusion
3. Imaging fluorescent nAChRs using spectral confocal microscopy
4. Linear unmixing of spectral confocal images and image analysis
5. Representative Results
We show a representative true color projection of a lambda stack of images of the medial habenula from a homozygous α4YFP mouse (Fig. 3A) taken with a spectral confocal microscope. We also show the emission spectrum from a region of interest containing α4YFP positive neurons from the same lambda stack image (Fig. 3B). A distinct emission peak is evident at ~527 nm, which is the peak fluorescence emission of YFP. The region neighbouring the medial habenula shows an emission spectrum lacking a spectral peak at 527 nm, indicating the absence of α4YFP nAChR subunits. Following linear spectral unmixing using reference spectra of YFP and mouse brain autofluoresence with significant overlap of emission (Fig. 4), separation of YFP and autofluorescent signal is possible yielding an α4YFP unmixed image, an autofluorescent unmixed image and a remainder channel. Clear localization of α4YFP fluorescence can be identified in the tightly packed soma of the medial habenula (Fig. 4).
In the hippocampus α4YFP is localized mainly in the medial perforant path, the tempero-ammonic path and the alveus12. These are all glutamatergic innervation of the hippocampus. We examined the effects of chronic nicotine on α4YFP expression in the hippocampal perforant path (Fig. 5). Chronic administration of nicotine (2 mg/kg/hr for 10 days) resulted in a significant increase (69 ± 14%) in α4YFP fluorescence from control saline treated mice to chronic nicotine treated mice (p = 0.001, Wilcoxon rank sum test) (Fig. 5).
Figure 1. Flow chart showing procedure to image changes in α4YFP nAChR subunits with chronic nicotine. Mini-osmotic pumps are filled with either saline or nicotine and implanted subcutaneously in α4YFP homozygous mice. After 10 days mice are perfused and fixed with 4% paraformaldehyde and the mouse brains are sectioned (30 μm thick) on slides. The brain section is imaged on a spectral confocal microscope (Nikon C1si) and spectrally unmixed into YFP and autofluorescent images. Then the α4YFP images are analyzed further with ImageJ software.
Figure 2. A schematic diagram of a lambda stack imaged from a spectral confocal microscope and linearly unmixed into its spectral components. (A) A lambda stack of images is collected. (B) A lambda stack consists of images collected at different wavelengths of light so that an emission spectrum is collected for each pixel across the entire stack. (C) Since YFP and tissue autofluorescence each have characteristic spectral signatures, the lambda stack can be deconvolved using a linear unmixing algebraic algorithm into separate YFP and autofluorescent signals. Thus, very accurate quantification of YFP fluorescence can be determined even in tissue with high levels of autofluorescence.
Figure 3. Spectral confocal image of a brain region expressing α4YFP nAChRs. (A) A true color projection of a lambda stack of images of the medial habenula from an α4YFP mouse taken with a Nikon C1si spectral confocal microscope. (B) Plots of spectra from a region of interest, which includes α4YFP containing neurons (green), and a region of interest outside of the medial habenula (red).
Figure 4. Linear spectral unmixing of the medial habenula. (A) Images of unmixed α4YFP and (B) autofluorescence following linear spectral unmixing. (C) Reference spectra of YFP (green triangles) and autofluorescence (yellow circles) used for spectral unmixing.
Figure 5. Upregulation of α4 nAChRs in the hippocampus of α4YFP knock-in mice exposed to chronic nicotine. (A) A tiled montage of α4YFP fluorescence from the hippocampus. The two dashed selection areas are the approximate locations on the inferior limb of the perforant path of the hippocampus where analyses were performed for each mouse. (B) α4YFP fluorescence was significantly higher in the perforant path of mice exposed to chronic nicotine than chronic saline (*, p = 0.001, Wilcoxon rank sum test). Results represent mean ± SEM from n = 20 measurements for both saline and chronic nicotine treated mice (5 mice for each treatment group).
Figure 6. Better depth expression of α4YFP as compared to antibody labeling. X-Z orthogonal views of α4YFP fluorescence (A) and VGlut2 antibody with Cy5 as a secondary label (B). (C) Plots showing greater fluorescence signal intensity degradation over depth for antibody staining (black squares) as compared to α4YFP (open circles).
The use of a fluorescent receptor in a knock-in mouse model to determine quantity and localization of a specific ion channel provides a number of advantages. In contrast to proteins such as actin, which is ubiquitously expressed in all cells, ion channels are present in far fewer numbers and their expression varies between neuronal subtypes making accurate analysis via traditional immunohistochemical techniques challenging. The α4YFP gene product is expressed at WT levels, being under control of the same promoter...
We have nothing to disclose.
Anthony Renda was supported by a University of Victoria Graduate Fellowship Award. This research was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant, a NARSAD Young investigator Award (to R.N.), a Victoria Foundation - Myre and Winifred Sim Fund, a Canadian Foundation for Innovation grant, a British Columbia Knowledge Development Fund and a Natural Sciences and Engineering Research Council of Canada Research Tools and Instrumentation Grant. We thank Jillian McKay, Christina Barnes, Ariel Sullivan, Jennifer MacDonald and Daniel Morgado for excellent mouse husbandry.
Name | Company | Catalog Number | Comments |
mini-osmotic pumps | ![]() | model 2002 | |
saline | TEKnova, Inc. | S5819 | |
(-)-nicotine hydrogen tartrate salt | Sigma-Aldrich | N5260 | |
eye drops | Novartis AG | Tear-Gel | |
Vetbond glue | 3M | 1469SB | |
heparin sodium salt | Sigma-Aldrich | H4784 | |
10x PBS | Invitrogen | 70011 | |
ketamine | Wyeth Animal Health | 0856-4403-01 | |
medatomidine hydrochloride | Pfizer Pharma GmbH | 1950673 | |
23G butterfly needle | BD Biosciences | 367253 | |
paraformaldehyde | Electron Microscopy Sciences | 15710 | |
plastic embedding mold | VWR international | 18986-1 | |
O.C.T. Mounting Compound | Tissue-Tek | 4583 | |
Mowiol 4-88 | EMD Millipore | 475904 | pH 8.5 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved