A subscription to JoVE is required to view this content. Sign in or start your free trial.
We show that a developed biomedical device involving continuous or pulsed visible laser based treatment that is combined with antibiotic treatment (gentamycin), results in a statistically significant synergistic effect leading to a reduction in the viability of P. aeruginosa PAO1, by 8 log's compared to antibiotic treatment alone.
Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens1-5. The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region4,6,7. There are also reports of biocidal effect of red and near infra red8 as well as green light9.
In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiotics and contains many predicted AcrB/Mex-type RND multidrug efflux systems10.
The method utilized free-living stationary phase Gram-negative bacteria (P. aeruginosa strain PAO1), grown in Luria Broth (LB) medium exposed to Q-switched and/or CW lasers with and without the addition of the antibiotic gentamycin. Cell viability was determined at different time points. The obtained results showed that laser treatment alone did not reduce cell viability compared to untreated control and that gentamycin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamycin treatment, however, resulted in a synergistic effect and the viability of P. aeruginosa was reduced by 8 log's.
The proposed method can further be implemented via the development of catheter like device capable of injecting an antibiotic solution into the infected organ while simultaneously illuminating the area with light.
1. Bacterial Culture
The laser based setup is schematically presented in Figure 1. The first experimental condition utilized a CW Nd:YAG laser having wavelength of 532 nm (the second harmonic of the Nd:YAG) and average optical power of 200 mW. This beam was split into two optical paths using optical 50%/50% beam splitter such that each split beam had power of 100 mW. The beam diameter was about 10 mm and thus the power density was about 100 mW/cm2. The exposure duration was 24 hr. Although the illumination power i.......
Phototherapy has been a field of advanced multidisciplinary research in recent years emerging as a promising approach for treatment numerous diseases. In this context the use of light in the visible range has been extensively studied. For example, it has been found that infected wounds can be healed more effectively by exposing them to intense visible light for sterilization purposes. The mechanism of action for this approach was proven to be through the induction of light-induced oxygen radicals (ROS) which kill the bac.......
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | Comments (optional) |
Lauria Broth | Difco | 241420 | |
Gentamycin | Sigma | G1914 | |
Bacto Agar | Difco | 231710 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved