Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Utilizing luciferase and in vivo imaging systems (IVIS) as a novel means to identify disease endpoints before clinical developments occur. IVIS has allowed us to visualize in real time the invasion of encephalitic viruses over multiple days, providing a more accurate disease model for future study. It has also allowed us to identify the potential protective features of antivirals and vaccines faster than currently utilized animal models. The capability to utilize individual animals over multiple time points ensures reduced animal requirements, costs, and overall morbidity to the animals utilized ensuring a more humane and more scientific means of disease study.

Abstract

Modern advancements in imaging technology encourage further development and refinement in the way viral research is accomplished. Initially proposed by Russel and Burch in Hume's 3Rs (replacement, reduction, refinement), the utilization of animal models in scientific research is under constant pressure to identify new methodologies to reduce animal usage while improving scientific accuracy and speed. A major challenge to Hume's principals however, is how to ensure the studies are statistically accurate while reducing animal disease morbidity and overall numbers. Vaccine efficacy studies currently require a large number of animals in order to be considered statistically significant and often result in high morbidity and mortality endpoints for identification of immune protection. We utilized in vivo imaging systems (IVIS) in conjunction with a firefly bioluminescent enzyme to progressively track the invasion of the central nervous system (CNS) by an encephalitic virus in a murine model. Typically, the disease progresses relatively slowly, however virus replication is rapid, especially within the CNS, and can lead to an often, lethal outcome. Following intranasal infection of the mice with TC83-Luc, an attenuated Venezuelan equine encephalitis virus strain modified to expresses a luciferase gene; we are able to visualize virus replication within the brain at least three days before the development of clinical disease symptoms. Utilizing CNS invasion as a key encephalitic disease development endpoint we are able to quickly identify therapeutic and vaccine protection against TC83-Luc infection before clinical symptoms develop. With IVIS technology we are able to demonstrate the rapid and accurate testing of drug therapeutics and vaccines while reducing animal numbers and morbidity.

Protocol

1. Animal Preparation

  1. Animal arrival: Upon arrival to the animal biosafety level 2 (ABSL2) facilities, allow animals a minimum of 2 days to acclimate to their new environment. Following this rest period, inspect the animals to evaluate their health and overall physical appearance.
    1. When utilizing fluorescent reporters it is important to place all animal subjects on an alfalfa free diet to limit the amount of GI autofluorescence and background signal.
  2. Shave animals: To improve the bioluminescent signal detected from the cranial region during imaging; shave the heads of all the animals. Anesthetize the animals with a mixture of oxygen gas and vaporized isoflurane. Once the animals are fully anesthetized, use electric clippers to shave their heads. Once finished with shaving, return the animals to their cages and observe for complete recovery from the effects of the anesthesia.
  3. Bio Medic Data Systems (BMDS) transponder insertion (to take place following shaving of the mice while the animals are fully anesthetized): For a less invasive means to track temperature implant a preprogrammed BMDS wireless transponder subcutaneously in the dorsal region of each mouse. These transponders allow for wireless identification and temperature recording. Following implantation of the transponder, apply a veterinary-grade tissue adhesive to the wound.
  4. Baseline collection: Before infection, record a baseline temperature and weight for all animals. Collect blood for plaque reduction neutralization test (PRNT) analysis through retro-orbital (RO) bleed while the mice are under anesthesia. Following blood collection, apply veterinary antibiotic eye ointment to reduce potential secondary bacterial infection. This baseline collection should be completed with consideration to the number of times the animals are placed under anesthesia due to stress on the mice. Future RO collections should be completed after imaging, while the mouse is still under anesthetic. The maximum blood collected from an RO should be around 200 μl.
  5. Infection: Place mice under anesthesia as described previously. Inoculate through the intranasal route using a dose of 5x106 to 5x107 pfu TC83-Luciferase in a total volume of 40 μl diluted by Phosphate Buffered Saline (PBS) through intranasal infection. Following infection, place the mice within their housing cage and observe recovery.

2. Animal Imaging

Disclaimer: Keep mice within their housing unit, the biosafety cabinet (BSC), or the XIC containment box at all times. The approved BSCs for this protocol are a Class II Type B1 or B2.

  1. Inject all animals with 10 μl per gram of body weight of intraperitoneal (IP) luciferin at a concentration of 15 mg/ml.
    1. Mice receiving Ampligen are to be injected IP at a dose of 12.5 mg/kg body weight at -4 hr post infection or +48 hr post infection based upon their group.
  2. Prior to injection with luciferin, separate the mice into groups of three to ensure a proper fit within the XIC-3 containment box.
    1. For all imaging, utilize ocular ointment/lubricant to prevent the drying of the cornea throughout the procedure.
  3. Open the LivingImage software and press Initialize to prepare the imaging box; set auto saving, exposure time to auto (exposure time on auto is a new feature of the LivingImage software 3.2 and newer), view field to C, and filter to open; field of view is based upon the number of mice you are imaging; and filter can be optimized as needed for other imaging projects.
  4. Confirm that the air charcoal filters have not expired, the oxygen tank is full, and the isoflurane reservoir is filled. Place small strips of electrical tape in the XIC-3 isolation box which assists with reducing animal movement during imaging.
  5. Inject the mice with luciferin IP as described in section 2.1 and place within the Isoflurane induction chamber (with lid opened) for 3-5 min.
  6. After 5 min, close the lid of the induction chamber and start the flow of isoflurane. The anesthetic is operated at approximately 3-5% with the oxygen flow rate set at approximately 2.0 L/min. Once fully unconscious wait an additional 30 sec and transfer the mice to the XIC-3 isolation box. Ensure the biosafety cabinet being utilized allows for the safe scavenging of isoflurane as this procedure will involve loss of isoflurane from the induction chamber (the IVIS unit contains its own Passive Fair canisters and the XIC-3 containment box directly connects to the in/out sockets to ensure contained anesthetic flow).
    1. Transfer the mice based upon chip/group number into the XIC-3 isolation box with the isoflurane connector attached and open. Position the mice so they are laid out in sternal recumbency with heads gently resting on the tape strips.
  7. Wipe down the XIC containment box with ethanol, spray hands and bottom of the XIC-3 with cavicide, and transfer to the IVIS imaging chamber. Reconnect the anesthesia to the containment box once inside the imaging unit.
  8. After 10 min following the injection of luciferin, image the mice through the living image software.
  9. Following initial imaging with an open filter, initiate a DLIT 3-Dimensional imaging using the Sequence analysis and Image Wizard setup for bioluminescent firefly luciferase. This imaging process will take 4-5 min and should be completed at a field of view relevant for the number of mice desired.
    1. Ex-vivo analysis is possible following necropsy and collection of the brain. Place the brain on a sterile Petri dish, drip 50-100 μl of stock luciferin on top, and place within the imaging box.
  10. Finalize a second open filter image at 15-17 min post infection upon completion of DLIT imaging. Ensure sequence analysis is off and the field of view and filter settings are returned to previous settings.

3. Return Mice and Data Analysis

  1. Turn off the isoflurane vaporizer and transfer the XIC containment box back to the biosafety cabinet.
  2. Place the mice back within their housing unit, close the top, spray the exterior with appropriate disinfectant and place back on the housing rack.
    1. Ensure mice have fully recovered from anesthesia.
  3. Repeat the above procedure as the experiment requires until imaging has completed.
  4. Disinfect the BSC, shut down the equipment, and transfer all data to an outside laboratory location for further analysis.
  5. Analyze the data and generate 3-dimensional images based upon IVIS results utilizing the LivingImage software.
    1. Ensure the image is properly oriented and lighting/color balance is set. Within the Tool Palette the options include Image Adjust, Corrections, Image Information, and ROI Tools.
    2. Utilize ROI shapes to identify specific signal strengths based upon location.
    3. Reconstruct the surface topography to highlight the mouse body, initialize 3D DLIT reconstruction, and use linear fit to set the organ map to the topographic reconstruction.
  6. Further viral titration analysis can be completed through collection of blood and organs. Titration in this study was completed through homogenization of brain tissue in modified eagles medium (MEM). The homogenate was serially diluted and we infected a 6 well plate of Vero cells for 1 hr. The cells were covered with a 1.5% agarose/2xMEM overlay and incubated for 2 days at 37 degrees. Cells were fixed with 10% formalin for 30 min and stained with crystal violet.

Results

With a genetically modified virus, TC83-Luciferase, we saw an increase in bioluminescent signal strength as the virus replication moves from the nasal region into the central CNS (Figure 1). Due to the high viral replication rate, we expect to see high levels of bioluminescent signal (Figure 2A) dependent upon the vector and the animal immune response to the vector. We expect this signal increase to continue to a peak, between days 5-7 post infection, in combination with viral replicatio...

Discussion

While this protocol covers the imaging aspects for in vivo analysis, it is important to recognize the bioluminescent vector as a key factor for future studies. Our utilization of TC83, an attenuated vaccine strain of VEEV, as a vector for expression of luciferase ensures that large quantities of the enzyme are being produced due to the high replication rate of the virus in the CNS as previously described1-4. While the addition of a second subgenomic promoter and the luciferase gene results in further ...

Disclosures

No conflicts of interest declared.

Acknowledgements

Institute for Translational Sciences UTMB-NIH grant 1UL1RR029876-01 and Alisha Prather for her assistance with video editing for this manuscript.

Materials

NameCompanyCatalog NumberComments
Name of the reagentCompanyCatalogue numberComments (optional)
D-Luciferin
Isoflurane
Xenogen IVIS System (Spectrum)Caliper Life Sciences
XGI-8-gas Anesthesia SystemCaliper Life Sciences
XIC-3 Containment BoxCaliper Life Sciences
LivingImage 4.0 SoftwareCaliper Life Sciences
Telemetry/identification chipsBio Medic Data SystemsIPTT-300Animal ID and Temperature
BD Integra 1ml TB syringe with 26 g x 3/8” needleFisher Scientific305279
Vet Bond tissue adhesiveFisher ScientificNC9259532
Vetropolycin Ophthalmic Ointment Webster Veterinary Products78444656
Dulbecco's Phosphate Buffered Saline 1XInvitrogen14190-144
BMDS Chip ReaderBio Medic Data SystemsDAS-7007S
DAS-HOST SoftwareBio Medic Data SystemsUsed to download probe information

References

  1. Steele, K. E., et al. Comparative Neurovirulence and Tissue Tropism of Wild-type and Attenuated Strains of Venezuelan Equine Encephalitis Virus Administered by Aerosol in C3H/HeN and BALB/c Mice. Veterinary Pathology Online. 35, 386-397 (1998).
  2. Ludwig, G. V., et al. Comparative neurovirulence of attenuated and non-attenuated strains of Venezuelan equine encephalitis virus in mice. Am. J. Trop. Med. Hyg. 64, 49-55 (2001).
  3. Charles, P. C., Walters, E., Margolis, F., Johnston, R. E. Mechanism of Neuroinvasion of Venezuelan Equine Encephalitis Virus in the Mouse. Virology. , 208-662 (1995).
  4. Volkova, E., Gorchakov, R., Frolov, I. The efficient packaging of Venezuelan equine encephalitis virus-specific RNAs into viral particles is determined by nsP1-3 synthesis. Virology. 344, 315-327 (2006).
  5. Patterson, M., et al. Rapid, non-invasive imaging of alphaviral brain infection: Reducing animal numbers and morbidity to identify efficacy of potential vaccines and antivirals. Vaccine. 29, 9345-9351 (2011).
  6. Cook, S. H., Griffin, D. E. Luciferase Imaging of a Neurotropic Viral Infection in Intact Animals. J. Virol. 77, 5333-5338 (2003).
  7. Contag, P. R., Olomu, I. N., Stevenson, D. K., Contag, C. H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245-247 (1998).
  8. Osorio, J. E., Iams, K. P., Meteyer, C. U., Rocke, T. E. Comparison of Monkeypox Viruses Pathogenesis in Mice by In Vivo Imaging. PLoS ONE. 4, e6592 (2009).
  9. Luker, G. D., Prior, J. L., Song, J., Pica, C. M., Leib, D. A. Bioluminescence Imaging Reveals Systemic Dissemination of Herpes Simplex Virus Type 1 in the Absence of Interferon Receptors. J. Virol. 77, 11082-11093 (2003).
  10. Russell, W. M. S., Burch, R. L. . The Principles of Humane Experimental Technique. , (1959).
  11. Kuehne, R. W., Pannier, W. L., Stephen, E. L. Indirect mouse model for the evaluation of potential antiviral compounds: results with Venezuelan equine encephalomyelitis virus. Antimicrob. Agents Chemother. 11, (1977).
  12. Lukaszewski, R. A., Brooks, T. J. G. Pegylated Alpha Interferon Is an Effective Treatment for Virulent Venezuelan Equine Encephalitis Virus and Has Profound Effects on the Host Immune Response to Infection. J. Virol. 74, 5006-5015 (2000).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

In Vivo Imaging Systems IVISNeuro invasive Encephalitic VirusImaging TechnologyViral ResearchAnimal ModelsScientific AccuracyReduction Of Animal UsageStatistical AccuracyVaccine Efficacy StudiesMorbidity And Mortality EndpointsIn Vivo Imaging Systems IVISFirefly Bioluminescent EnzymeCentral Nervous System CNSEncephalitic VirusMurine ModelIntranasal InfectionTC83 LucAttenuated Venezuelan Equine Encephalitis VirusLuciferase Gene

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved