JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Behavior

Stereotactic Injection of MicroRNA-expressing Lentiviruses to the Mouse Hippocampus CA1 Region and Assessment of the Behavioral Outcome

Published: June 10th, 2013

DOI:

10.3791/50170

1Department of Biological Chemistry and The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem

MicroRNAs have significant roles in brain structure and function. Here we describe a method to enforce hippocampal miRNA over-expression using stereotactic injection of an engineered miRNA-expressing lentivirus. This approach can serve as a relatively rapid way to assess the in vivo effects of over-expressed miRNAs in specific brain regions.

MicroRNAs (miRNAs) are small regulatory single-stranded RNA molecules around 22 nucleotides long that may each target numerous mRNA transcripts and dim an entire gene expression pathway by inducing destruction and/or inhibiting translation of these targets. Several miRNAs play key roles in maintaining neuronal structure and function and in higher-level brain functions, and methods are sought for manipulating their levels for exploring these functions. Here, we present a direct in vivo method for examining the cognitive consequences of enforced miRNAs excess in mice by stereotactic injection of miRNA-encoding virus particles. Specifically, the current protocol involves injection into the hippocampal CA1 region, which contributes to mammalian memory consolidation, learning, and stress responses, and offers a convenient injection site. The coordinates are measured according to the mouse bregma and virus perfusion is digitally controlled and kept very slow. After injection, the surgery wound is sealed and the animals recover. Lentiviruses encoding silencers of the corresponding mRNA targets serve to implicate the specific miRNA/target interaction responsible for the observed effect, with naïve mice, mice injected with saline and mice injected with "empty" lentivirus vectors as controls. One month post-injection, the animals are examined in the Morris Water Maze (MWM) for assessing their navigation learning and memory abilities. The MWM is a round tank filled with colored water with a small platform submerged 1 cm below the water surface. Steady visual cues around the tank allow for spatial navigation (sound and the earth's magnetic field may also assist the animals in navigating). Video camera monitoring enables measuring the route of swim and the time to find and amount the platform. The mouse is first taught that mounting the hidden platform offers an escape from the enforced swimming; it is then tested for using this escape and finally, the platform is removed and probe tests examine if the mouse remembers its previous location. Repeated tests over several consecutive days highlight improved performance of tested mice at shorter latencies to find and mount the platform, and as more direct routes to reach the platform or its location. Failure to show such improvement represents impaired learning and memory and/or anxiety, which may then be tested specifically (e.g. in the elevated plus maze). This approach enables validation of specific miRNAs and target transcripts in the studied cognitive and/or stress-related processes.

The role of particular miRNAs in nervous system functioning has recently been challenged by lentiviral injection in several studies. MiRNAs have been found to be crucial for maintaining and re-shaping synapse structure 1, synaptogenesis 2 and synapse remodeling and maintenance 3. These studies strongly suggest that miRNAs are engaged, via multileveled regulatory effects in both the shaping up and in maintaining the main output of the nervous system, cognitive function. Stereotactic injection of lentivirus particles into specific regions in the rodent brain enables searching for alterations in synapse morphology and neuronal act....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Lentivirus Preparation

  1. Grow HEK-293FT cells to 90% confluence.
  2. On the day of transfection change cell medium to serum-free DMEM supplemented with 1 mM glutamine and 50 mg/ml penicillin-streptomycin.
  3. Co-transfect the cells with a pLKO.1-Puro vector and with plasmids coding for the delta R8.2 and VSV-G moieties and the miRNA of interest, using 10 μl of 1 mg/ml polyethylenimine as a carrier 9.
  4. Collect packaged lentiviruses at 24 hr and 48 hr post-transfection, filte.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Injection of 0.5 μl lentivirus into the CA1 region in the mouse hippocampus, with the flow rate indicated in the protocol section yields an infected sphere of about 1 mm in the rostral-caudal axis, and about 0.5 mm in the medial-lateral and the anterior-posterior axes (Figure 3).

Figure 1
Figure 1. Bregma point and injection apparatus. (a).......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Stereotactic injection of a lentivirus is a relatively rapid method for in vivo assessment for both up- or down- regulation of different genes and miRNAs. The main alternative is a genetically engineered mouse which is a much more laborious and time consuming technique then direct lentivirus injection. In addition, the up regulation, in lentivirus injection, occurs at a specific time in the adult mouse and does not include any possibility of leakiness during development, as is most often the case in the genetica.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study has been supported by the Edmond and Lily Safra Center for Brain Sciences (SB fellowship), The Legacy Heritage Biomedical Science Partnership Program of the Israel Science Foundation (Grant No. 378/11, to HS) and the German Israeli Foundation for Scientific Research and Development (G.I.F) (Grant No. 1093-32.2/2010, to HS).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Equipment
Rodent weigh scale Burtons (UK) 115-455  
heating pad FIRstTechnology DCT-25  
trimming machine Stoelting 51465  
stereotact Stoelting 51730  
Scalpel and blades Kent scientific INS500348  
Harland syringe Hamilton 7632-01  
driller Stoelting 51449  
digital pump Harvard apparatus 704507  
Water tank and platform Stoelting 60135  
Reagents
ketamine Vetoquinol(Lure France) 3055503  
domitor Orion pharma 107140-10  
Rimadyl Pfizer animal health 24751  
moisture ointment - Synthomycine 5% Rekah Pharmaceutical 195
histoacryl Braun 112101  
saline Sigma Aldrich D8662  

  1. Siegel, G., et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biology. 11, 705-716 (2009).
  2. Jin, P., et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience. 7, 113-117 (2004).
  3. Simon, D. J. The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell. 133, 903-915 (2008).
  4. Consiglio, A. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Medicine. 7, 310-316 (2001).
  5. Jakobsson, J., Lundberg, C. Lentiviral vectors for use in the central nervous system. Molecular Therapy: The Journal of the American Society of Gene Therapy. 13, 484-493 (2006).
  6. Berson, A. Cholinergic-associated loss of hnRNP-A/B in Alzheimer's disease impairs cortical splicing and cognitive function in mice. EMBO Molecular Medicine. , (2012).
  7. Haramati, S. MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 31, 14191-14203 (2011).
  8. Shaltiel, G., et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Structure & Function. , 10-1007 (2012).
  9. Boussif, O., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America. 92, 7297-7301 (1995).
  10. Mendenhall, A., Lesnik, J., Mukherjee, C., Antes, T., Sengupta, R. Packaging HIV- or FIV-based lentivector expression constructs & transduction of VSV-G pseudotyped viral particles. J. Vis. Exp. (62), e3171 (2012).
  11. Nunez, J. Morris Water Maze Experiment. J. Vis. Exp. (19), e897 (2008).
  12. Bromley-Brits, K., Deng, Y., Song, W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J. Vis. Exp. (53), e2920 (2011).
  13. Regev, L., Ezrielev, E., Gershon, E., Gil, S., Chen, A. Genetic approach for intracerebroventricular delivery. Proceedings of the National Academy of Sciences of the United States of America. 107, 4424-4429 (2010).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved