A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Transcellular protein interactions are important determinants of pancreatic beta-cell function. Detailed here is a method—adapted from a coculture model of synaptogenesis—for investigating how specific transmembrane proteins influence insulin secretion. Transfected HEK293 cells express proteins of interest; beta cells do not need to be transfected or otherwise directly perturbed.
Interactions between cell-surface proteins help coordinate the function of neighboring cells. Pancreatic beta cells are clustered together within pancreatic islets and act in a coordinated fashion to maintain glucose homeostasis. It is becoming increasingly clear that interactions between transmembrane proteins on the surfaces of adjacent beta cells are important determinants of beta-cell function.
Elucidation of the roles of particular transcellular interactions by knockdown, knockout or overexpression studies in cultured beta cells or in vivo necessitates direct perturbation of mRNA and protein expression, potentially affecting beta-cell health and/or function in ways that could confound analyses of the effects of specific interactions. These approaches also alter levels of the intracellular domains of the targeted proteins and may prevent effects due to interactions between proteins within the same cell membrane to be distinguished from the effects of transcellular interactions.
Here a method for determining the effect of specific transcellular interactions on the insulin secreting capacity and responsiveness of beta cells is presented. This method is applicable to beta-cell lines, such as INS-1 cells, and to dissociated primary beta cells. It is based on coculture models developed by neurobiologists, who found that exposure of cultured neurons to specific neuronal proteins expressed on HEK293 (or COS) cell layers identified proteins important for driving synapse formation. Given the parallels between the secretory machinery of neuronal synapses and of beta cells, we reasoned that beta-cell functional maturation might be driven by similar transcellular interactions. We developed a system where beta cells are cultured on a layer of HEK293 cells expressing a protein of interest. In this model, the beta-cell cytoplasm is untouched while extracellular protein-protein interactions are manipulated. Although we focus here primarily on studies of glucose-stimulated insulin secretion, other processes can be analyzed; for example, changes in gene expression as determined by immunoblotting or qPCR.
We describe here a method to facilitate investigations of how the extracellular domains of specific transmembrane proteins affect insulin secretion. The method probes the effects of interactions of the protein of interest with proteins (or possibly other molecules) on the pancreatic beta-cell surface. The method allows investigations of how cell-surface proteins expressed by beta cells or by other neighboring cells (e.g. endothelial cells, neurons, pancreatic alpha cells) affect beta-cell function through transcellular interactions (i.e. through interactions with interaction partners on the surface of adjacent beta cells).
The cellular plasma membrane contains a complex array of structural and functional proteins serving as bridges to the extracellular environment. By formation of transcellular connections or by initiation of plastic signaling events, interactions between cell-surface proteins can help coordinate the function of neighboring cells. Pancreatic beta cells are clustered together within the pancreatic islets and act in a coordinated fashion to maintain glucose homeostasis1. As revealed, for example, by the importance of extracellular EphA-ephrinA and neuroligin-2 interactions in the regulation of glucose-stimulated insulin secretion, it is becoming ever more clear that increased knowledge of the extracellular interactions occurring between proteins on the surfaces of adjacent beta cells will be of great importance for gaining a full understanding of insulin secretion, beta cell functional maturation and the maintenance of glucose homeostasis1-3. The goal of the method described here is to enable investigations of the effects on beta cell function of transcellular interactions involving specific transmembrane or otherwise-cell-surface-associated proteins. By co-culturing beta cells with HEK293 cells transfected with different expression constructs, the effects on beta cell function of different cell-surface proteins or mutated variants thereof can be efficiently probed. This is accomplished without having to transfect the beta cells themselves.
Elucidation of the roles of particular transcellular interactions by knockdown, knockout or overexpression studies in cultured beta cells or in vivo necessitates direct perturbation of beta-cell mRNA and protein expression, potentially affecting beta cell health and/or function in ways that could confound analyses of the effects of specific extracellular interactions. These approaches also alter levels of the intracellular domains of the targeted proteins and, further, do not allow effects due to interactions between proteins on or in the same cell to be distinguished from the effects of transcellular interactions. Here, a method for determining the effect of specific transcellular interactions on the insulin secreting capacity and responsiveness of beta cells is described. This method is applicable to insulin-secreting beta-cell lines, such as INS-1 cells4, and to dissociated primary rodent or human beta cells. It is based on coculture models developed by neurobiologists, who found that exposure of cultured neurons to specific neuronal proteins expressed on HEK293 (or COS) cell layers could identify proteins that drive synapse formation5,6. Given the parallels between the secretory machinery of neuronal synapses and of beta cells, we reasoned that beta-cell function and functional maturation might be driven by similar transcellular interactions7-9. In order to probe these interactions, we developed the system described herein in which beta cells are cocultured on a layer of HEK293 cells expressing a protein of interest10. This system allows the beta-cell cytoplasm to remain untouched while extracellular protein-protein interactions are manipulated.
1. Transfection of HEK293 Layer
2. Optional Fixation of HEK293 Cells Expressing Transfected Protein
Transfected HEK293 cells can be gently fixed in order to facilitate coculture in media that might be harmful to living HEK293 cells (e.g. step 3.9 below) or to allow the efficient preparation in advance of plates for several experiments all at once (see also Discussion).
3. Co-culturing of INS-1 Beta Cells with HEK293 Cells
4. Glucose Stimulated Insulin Secretion
Using the method described here, we have tested the effect of different variants of the protein neuroligin on insulin secretion. This complements our published work investigating the effect of neuroligin-2 on beta-cell function10. Figure 2, for example, depicts results obtained from coculturing INS-1 beta cells with HEK293 cells transfected to express a neuroligin isoform referred to here as NL-X. This experiment was designed to test the hypothesis that NL-X engages in transcellular interactio...
The coculture method described here provides an effective way to determine the physiological importance of specific beta-cell-surface, transmembrane proteins, and specifically of their extracellular domains. By culturing beta cells or insulinoma cells (such as the INS-1 cells employed here) in contact with HEK293 cells displaying a protein of interest on the cell surface, experiments can be designed to determine the effects of extracellular protein-protein interactions without directly disturbing the intracellular milieu...
We have nothing to disclose.
This work was supported by National Institutes of Health grant R01DK080971 and Juvenile Diabetes Research Foundation grant 37-2009-44. We also appreciate support received from the UCSD Pediatric Diabetes Research Center (PDRC).
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | Comments (optional) |
pcDNA 3.3 vector/backbone | Invitrogen | K830001 | |
Lipofectamine 2000 | Invitrogen | 18324012 | |
DMEM | Mediatech | 45001-312 | |
Pen/strep solution | Mediatech | 45001-652-1 | |
Amphotericin B | Mediatech | 45001-808-1/30 | |
RPMI-1640 | Mediatech | 45001-404 | |
D-PBS | Mediatech | 45001-434 | |
Sodium Pyruvate | Mediatech | 45001-710-1 | |
2-Mercaptoethanol | Invitrogen | 21985023 | |
Cell stripper | Mediatech | 45000-668 | |
T75 Flask | BD | 1368065 | |
16% Paraformaldehyde | Electron Microscopy Sciences | 50980487 | |
10X PBS | Mediatech | 45001-130 | |
Fetal bovine serum | Mediatech | MT35010CV | |
IBMX | Sigma | I5879-100MG | |
RIPA lysis buffer | Sigma | R0278 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved