A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A novel vocal fold bioreactor capable of delivering physiologically relevant, vibratory stimulation to cultured cells is constructed and characterized. This dynamic culture device, when combined with a fibrous poly(ε-caprolactone) scaffold, creates a vocal fold-mimetic environment that modulates the behaviors of mesenchymal stem cells.
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.
The human vocal fold, composed of an epithelial layer, the lamina propria (LP) and the vocalis muscle, is a specialized soft tissue that converts air flow from the lungs into acoustic waves for sound production.1 Vocal folds oscillate regularly during normal phonation, exhibiting strains of up to 30% at fundamental frequencies ranging from 100-300 Hz.2 Adult vocal fold LP is a gradient structure composed of a superficial (SLP), an intermediate (ILP) and a deep (DLP) layer. Further classification groups the epithelium and the SLP as the mucosa layer, and combines the ILP and DLP into the vocal ligament.3 The SLP layer contains primarily an amorphous matrix with sparsely dispersed collagenous fibers, while the ligament is enriched with mature collagen and elastin fibers to provide sufficient strength.4 The structure and mechanics of newborn vocal folds vary significantly from their mature counterparts. Although mechanisms regulating vocal fold development and maturation are not yet fully understood, experimental evidence has pointed to the defining roles of vocalization-derived mechanical stress.
Several medical conditions, including voice abuse, infections, chemical irritants and surgical procedures, can damage the vocal fold. Vocal fold disorders affect an estimated 3-9% of the U.S. population. Current treatment methods for vocal fold disorders are limited5 and a stem cell-based tissue engineering approach has emerged as a promising strategy for restoring vocal fold function. Mesenchymal stem cells (MSCs) are a suitable alternative to the primary vocal fold fibroblasts for vocal fold tissue engineering.6-9 Stem cell fate specification and subsequent tissue development are mediated by the specific niche they reside in, of which the mechanical condition is a vital factor.10 Mechanical forces are essential regulators of tissue morphogenesis and homeostasis, especially for tissues that are routinely subjected to loading.11 From a tissue engineering perspective, it has been demonstrated that exposure to physiologically relevant mechanical stimulations promotes stem cell differentiation and tissue-specific matrix remodeling.12-15
Tissue culture bioreactors are designed to simulate the desired physiological environment for cell or tissue growth in vitro. For vocal fold tissue engineering, it is especially critical to recreate the mechanical environment of the phonating vocal folds. An ideal vocal fold bioreactor should effectively deliver vibratory cues to culture cells, allowing facile control over frequency, amplitude and duration of vibrations. Titze and coworkers devised a vocal fold bioreactor (T1 bioreactor)16 that combines static stretch with high frequency (20-200 Hz) oscillations to stimulate the cellular production of matrix proteins. Using this bioreactor, Webb and colleagues17 studied the effects of 10-day, 100-Hz vibrations on dermal fibroblasts cultured in a hyaluronic acid (HA)-based hydrogel. Constructs subjected to vibration exhibited an elevated expression of HA synthase-2 (HAS2), decorin, fibromodulin and matrix metalloproteinase-1 (MMP1), relative to the static controls. The stimulatory effects were found to be time dependent. More recently, our group18 assembled a vocal fold bioreactor (J1 bioreactor) using a power amplifier, a function generator, an enclosed loud speaker and a circumferentially-anchored silicone membrane that transfers the oscillating air to the attached cells. Neonatal foreskin fibroblasts cultivated in the J1 bioreactor were subjected to 1 hr of vibration at 60, 110 or 300 Hz, with an in-plane strain of up to 0.05%. The qPCR results suggested that the expression of some ECM genes was moderately altered in response to the varied vibratory frequencies and amplitudes.
These bioreactor designs, while intriguing, have several limitations. For example, the T1 system requires a large number of connectors and bars for mechanical coupling, limiting the maximum frequencies attainable. Moreover, cells may be subjected to undesirable mechanical agitation and fluid perturbation that complicate the data interpretation. The J1 bioreactor, on the other hand, exhibits relatively low energy conversion efficiency and is not user-friendly. In addition, vibration frequently detaches the cell-laden constructs from the underlying silicone membrane. The J2 vocal fold bioreactor reported here, designed based on the same principle as the J1 version, is optimized for consistency and reproducibility. The phonation-mimicking vibrations are generated aerodynamically in individually fitted vibration chambers where MSC-populated fibrous poly(ε-caprolactone) (PCL) scaffolds are effectively secured. Laser Doppler Vibrometry (LDV) allows the user to verify the vibratory profile of the membrane/scaffold assembly. In our demonstration, MSCs are exposed to 200-Hz sinusoidal vibrations with a 1-hr-on-1-hr-off (OF) pattern for a total of 12 hr daily for 7 days. Cellular responses to the imposed vibratory cues are investigated systematically. Overall, the J2 vocal fold provides the most user-friendly features, allowing dynamic cell culture studies to be conducted in a high throughput and reproducible fashion.
1. Bioreactor Assembly (Video 1)
2. Scaffold Fabrication and Characterization
3. Bioreactor Assembly and Characterization
4. Vibratory Cell Culture
5. Biological Evaluations
The PCL scaffolds fabricated by electrospinning contain micron sized interstitial pores and randomly entangled fibers with an average diameter of 4.7 µm (Figure 4A). At a higher magnification, nanoscale grooves and pores are visible on individual fibers (Figure 4B). Coating of the scaffolds with fibronectin improves hydrophilicity and facilitates the initial cell adhesion/spreading on the PCL scaffold (unpublished observation).
Sinusoidal wavefo...
Successful engineering of functional vocal fold tissues in vitro requires the recreation of a vocal fold-like microenvironment to mediate the behaviors of multipotent cells. It is generally accepted that tissue or organ structures reflect the functions they are required to perform.22 For vocal fold tissues, the high frequency vibrations that occur during phonation are proposed to be important for tissue maturation. In our study, PCL scaffolds are used to provide a ligament-like structural support whil...
No competing financial interests exist.
We thank Dr. Jeffrey Caplan for his training and advice on confocal imaging. We also thank the Keck Electron Microscopy Lab and Dr. Chaoying Ni for SEM assistance. This work is funded by National Institutes of Health (NIDCD, R01DC008965 and R01DC011377). ABZ acknowledges NSF Integrative Graduate Education & Research Traineeship (IGERT) program for funding.
Name | Company | Catalog Number | Comments |
silicone elastomer kit | Dow Corning | Sylgard 184 | cure the membrane at 100 C for 2 hr |
PCL | Sigma Aldrich | 440744-500G | Mn ~ 80 kDa, dissolve overnight |
chloroform | Sigma Aldrich | C7559-5VL | |
human bone marrow-derived MSCs | Lonza | PT-2501 | received with passage 2 |
MSC maintenance media | Lonza | PT-3001 | 10% FBS in basal media supplemented with L-glutamine, gentamicin and amphotericin |
Accutase cell dissociation reagent | Life Technologies | A11105-01 | |
ethanol | Sigma Aldrich | E7023-500ML | |
fibronectin | Sigma Aldrich | F2006-1MG | |
MMP1 DuoSet ELISA kit | R&D systems | DY901 | |
HA ELISA kit | Echelon Biosciences | K-1200 | |
PBS | Life Technologies | 14190-136 | |
propidium iodide | Life Technologies | P1304MP | |
Syto-13 | Life Technologies | S7575 | |
QuantiTect reverse transcription kit | Qiagen | 205311 | |
SYBR Green PCR master mix | Life Technologies | 4309155 | |
replacement speaker | DAYTON audio (via Parts Express) | DS90-8 | paper cone, full range (80-13000 Hz), 85dB |
Ergo Micro torque screwdriver | Mountz | # 020377 | torque range: 20-120 cN.m |
stereo speaker selector | RadioShack | 40-244 | maximum power handling 50 W |
function generator | Agilent | 33220A | frequency range 1 µHz- 20 MHz |
power amplifier | PYLE audio | PylePro PT2400 | frequency response: 10 Hz-50 kHz, two speaker channels |
cell culture incubator | Thermo Fisher | Steri-Cult 3307 | |
syringe pump | New Era Pump Systems | NE-300 | |
High voltage power supply | Spellman | CZE 1000R | output voltage: 0-30 kV |
scanning electron microscope | JEOL-USA | JSM-7400F | |
desk gold sputter coater | Denton Vacuum | DSK00V-0013 | |
Doppler laser vibrometer | Polytec | PDV-100 | non-contact velocity measurement (0-22 kHz) |
PCR sequence detection system | Applied Biosystems | ABI7300 | |
multiphoton confocal microscope | Zeiss | Zeiss 510Meta NLO | |
UV-VIS Spectrophotometer | NanoDrop Products via Thermo Scientific | ND-2000 | |
VibSoft Data Acquisition Software | Polytec | acquisition bandwidth up to 40 MHz | |
Origin 8.5 data analysis software | OriginLab | ||
qbasePlus qPCR data analysis software | Biogazelle | V2.3 | |
aluminium alloy | McMaster-Carr | Alloy 6061 | |
acrylic blocks | McMaster-Carr | ||
polycarbonate anti-humidity chamber | McMaster-Carr | Impact-Resistant Polycarbonate | |
screws | McMaster-Carr | ||
electronic cable/wire | |||
medical grade PVC tubing | US Plastic Corp. | Tygon S-50-HL | clear, biocompatible |
10 mL syringe | Becton Dickinson | 309604 | |
21 G blunt ended needle | Small Parts | NE-213PL-25 | 1-1/2" length |
Alligator clip adapters | RadioShack | 270-354 | fully insulated |
8 mm biopsy punch | Sklar Surgical Instruments | 96-1152 | sterile, disposable |
12 mm biopsy punch | Acuderm (via Fisher Scientific) | NC9998681 | |
tissue culture flasks | Corning | cell culture treated |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved