Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A novel vocal fold bioreactor capable of delivering physiologically relevant, vibratory stimulation to cultured cells is constructed and characterized. This dynamic culture device, when combined with a fibrous poly(ε-caprolactone) scaffold, creates a vocal fold-mimetic environment that modulates the behaviors of mesenchymal stem cells.

Abstract

In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

Introduction

The human vocal fold, composed of an epithelial layer, the lamina propria (LP) and the vocalis muscle, is a specialized soft tissue that converts air flow from the lungs into acoustic waves for sound production.1 Vocal folds oscillate regularly during normal phonation, exhibiting strains of up to 30% at fundamental frequencies ranging from 100-300 Hz.2 Adult vocal fold LP is a gradient structure composed of a superficial (SLP), an intermediate (ILP) and a deep (DLP) layer. Further classification groups the epithelium and the SLP as the mucosa layer, and combines the ILP and DLP into the vocal ligament.3 The SLP layer contains primarily an amorphous matrix with sparsely dispersed collagenous fibers, while the ligament is enriched with mature collagen and elastin fibers to provide sufficient strength.4 The structure and mechanics of newborn vocal folds vary significantly from their mature counterparts. Although mechanisms regulating vocal fold development and maturation are not yet fully understood, experimental evidence has pointed to the defining roles of vocalization-derived mechanical stress.

Several medical conditions, including voice abuse, infections, chemical irritants and surgical procedures, can damage the vocal fold. Vocal fold disorders affect an estimated 3-9% of the U.S. population. Current treatment methods for vocal fold disorders are limited5 and a stem cell-based tissue engineering approach has emerged as a promising strategy for restoring vocal fold function. Mesenchymal stem cells (MSCs) are a suitable alternative to the primary vocal fold fibroblasts for vocal fold tissue engineering.6-9 Stem cell fate specification and subsequent tissue development are mediated by the specific niche they reside in, of which the mechanical condition is a vital factor.10 Mechanical forces are essential regulators of tissue morphogenesis and homeostasis, especially for tissues that are routinely subjected to loading.11 From a tissue engineering perspective, it has been demonstrated that exposure to physiologically relevant mechanical stimulations promotes stem cell differentiation and tissue-specific matrix remodeling.12-15

Tissue culture bioreactors are designed to simulate the desired physiological environment for cell or tissue growth in vitro. For vocal fold tissue engineering, it is especially critical to recreate the mechanical environment of the phonating vocal folds. An ideal vocal fold bioreactor should effectively deliver vibratory cues to culture cells, allowing facile control over frequency, amplitude and duration of vibrations. Titze and coworkers devised a vocal fold bioreactor (T1 bioreactor)16 that combines static stretch with high frequency (20-200 Hz) oscillations to stimulate the cellular production of matrix proteins. Using this bioreactor, Webb and colleagues17 studied the effects of 10-day, 100-Hz vibrations on dermal fibroblasts cultured in a hyaluronic acid (HA)-based hydrogel. Constructs subjected to vibration exhibited an elevated expression of HA synthase-2 (HAS2), decorin, fibromodulin and matrix metalloproteinase-1 (MMP1), relative to the static controls. The stimulatory effects were found to be time dependent. More recently, our group18 assembled a vocal fold bioreactor (J1 bioreactor) using a power amplifier, a function generator, an enclosed loud speaker and a circumferentially-anchored silicone membrane that transfers the oscillating air to the attached cells. Neonatal foreskin fibroblasts cultivated in the J1 bioreactor were subjected to 1 hr of vibration at 60, 110 or 300 Hz, with an in-plane strain of up to 0.05%. The qPCR results suggested that the expression of some ECM genes was moderately altered in response to the varied vibratory frequencies and amplitudes.

These bioreactor designs, while intriguing, have several limitations. For example, the T1 system requires a large number of connectors and bars for mechanical coupling, limiting the maximum frequencies attainable. Moreover, cells may be subjected to undesirable mechanical agitation and fluid perturbation that complicate the data interpretation. The J1 bioreactor, on the other hand, exhibits relatively low energy conversion efficiency and is not user-friendly. In addition, vibration frequently detaches the cell-laden constructs from the underlying silicone membrane. The J2 vocal fold bioreactor reported here, designed based on the same principle as the J1 version, is optimized for consistency and reproducibility. The phonation-mimicking vibrations are generated aerodynamically in individually fitted vibration chambers where MSC-populated fibrous poly(ε-caprolactone) (PCL) scaffolds are effectively secured. Laser Doppler Vibrometry (LDV) allows the user to verify the vibratory profile of the membrane/scaffold assembly. In our demonstration, MSCs are exposed to 200-Hz sinusoidal vibrations with a 1-hr-on-1-hr-off (OF) pattern for a total of 12 hr daily for 7 days. Cellular responses to the imposed vibratory cues are investigated systematically. Overall, the J2 vocal fold provides the most user-friendly features, allowing dynamic cell culture studies to be conducted in a high throughput and reproducible fashion.

Protocol

1. Bioreactor Assembly (Video 1)

  1. Make an aluminum mold (circular die + spacer pin) with pre-determined inner and outer dimensions (Figure 1).
  2. Using the mold from step 1.1, fabricate a silicone membrane (diameter: 42 mm, thickness: 1.5 mm, Figure 1) with an entrenched sleeve (diameter: 12 mm, thickness ~0.25 mm, shaped by the spacer pin in Figure 1) in the middle using a commercially available silicone elastomer kit.
  3. Make a pair of acrylic blocks (Figure 2 (4, 5)) with a circular opening (diameter: 24 mm) in the middle, engrave the top (1.8 cm thick) and bottom (0.9 cm thick) blocks with matching ridges and grooves.10
  4. Sandwich the silicone membrane between the paired acrylic blocks. Secure the assembly with four corner screws using a micro torque screwdriver set to a constant force (35 cN·m). As a result, a water-tight, 24 mm wide and 18 mm deep vibration chamber is created (Figure 2C).
  5. Mount a 3extended range mini-woofer (Figure 2D, 8 Ω/20 W) underneath the vibration chamber through another set of corner screws on the bottom acrylic block. At this point, an individual vibration module is assembled.
  6. Replicate seven additional vibration modules. Affix four of them to one of two stationary aluminum bars (40 cm x 10 cm x 2.5 cm) by placing the speaker bases in evenly spaced circular holes (diameter: 7 cm, thickness: 2 cm) cut into the bars. Stabilize each speaker by inserting a screw through the side of the aluminum bar into each circular hole.
  7. Individually control the speakers by a speaker selector. Connect individual speakers to the selector by attaching wires to the positive and negative inputs on the speaker body then to the corresponding outputs on the selector. The speaker selector allows the signal from the function generator, after passing through a power amplifier, to reach all eight speakers at once (Figure 2E).
  8. Place the two chamber arrays, the speaker selector and associated electronics in an anti-humidity enclosure. House the entire assembly in a commercial cell culture incubator.
  9. Feed the main cables (through a medical grade PVC tubing) connecting the power amplifier and speaker selector through the filter assembly at the back of the incubator.

2. Scaffold Fabrication and Characterization

  1. Dissolve PCL pellets in chloroform at a concentration of 15 wt%. Load the solution into a 10 ml syringe capped with a 21 G blunt-ended needle.
  2. Lock the syringe onto a programmable syringe pump and set the flow rate at 1 ml/hr.
  3. Place the aluminum foil-covered collector across from the needle horizontally, with a needle tip-to-collector distance of ~18 cm.
  4. Clamp the positive alligator clip to the middle of the needle, and the ground alligator clip to the aluminum collector, then set the voltage on the high voltage power supply at 15 kV. CAUTION: high voltage, keep distance from the needle.
  5. Sequentially turn on the syringe pump and power supply; quickly clean/remove the residual polymer solution surrounding the tip of the needle using a dry paper towel before stable fiber jets and Taylor cone19 are formed.
  6. Allow the fibers to accumulate on the Al collector to a thickness of ~250-300 µm (~7 hr under the current spinning conditions). Store the resultant scaffolds in a vacuum desiccator for 1-2 days to remove any residual solvent.
  7. Image the scaffolds, sputter coated with gold, using a Scanning Electron Microscope to show consistent fiber morphology.10

3. Bioreactor Assembly and Characterization

  1. Punch a cylindrical disk (diameter: 8 mm) with four arms (length: 2 mm) out of the as-spun PCL mat (Figure 2A) by first using a 12 mm diameter biopsy punch to cut the outer diameter of the disk. Then use a second, 8 mm biopsy punch to make four 2 mm long notches evenly spaced around the circular blade to score where the arms are to be cut. After scoring with the 8 mm punch, use a scalpel blade to cut the edges of the arms outward. Insert the scaffold into the groove of the silicone membrane via the extended arms (Video 1). Flatten the inserted scaffold by gently pressing the surface using flathead tweezers.
  2. Attach a small piece of thin Al foil (8 mm x 2 mm, orthogonal shape, Figure 2B) to the PCL scaffold to aid laser reflection.
  3. Secure the assembled silicone membrane/PCL scaffold (as detailed in step 1.4) in the vibration chamber. Add 1.5 ml water in the chamber in order to hydrate the PCL scaffold before vibration.
  4. Using the function generator, introduce vibration signals (e.g., 200 Hz sinusoidal waves with a peak-to-peak voltage, Vpp, of 0.1 V) to the sandwiched acrylic chamber. Use a voltmeter to accurately measure the voltage at each speaker input. Note: the Vpp readout from the function generator will differ from the eventual voltage delivered to the speaker.
  5. Assemble the single-point LDV and secure the fiber-optic laser sensor head to a pan-tilt head tripod. Angle the sensor head so that it is pointing perpendicular to the tabletop. Connect the LDV sensor head to the data acquisition module via coaxial cable then the module to the laptop via USB.
  6. Focus the laser beam perpendicularly at various predetermined points on the silicone membrane (Figure 2B and Figure 3).
  7. Using the data acquisition software, record the mid-membrane displacement. Click “Acquisition Settings” from the “Options” menu; then change the measurement mode to “FFT”. Next, click the “Continuous Measurement” in the main toolbar then click the peak that forms at the chosen frequency (Figure 6D) to record displacement.
  8. Plot the normal mid-membrane displacement (w0) as a function of the relative position across the substrate. Construct a 3D colormap of the surface vibratory profile using Origin 8.5 data analysis software.

4. Vibratory Cell Culture

  1. Sub-culture human bone marrow-derived MSCs in T150 tissue culture flasks at an initial seeding density of 4,000-5,000 cells/cm2 in MSC maintenance media.
  2. After 7-8 days of cell culture (to ~85% confluency), trypsinize the cells with a cell dissociation reagent such as accutase, count using a hemocytometer, centrifuge (440 x g for 5 min), and re-suspend the cell pellet in fresh MSC maintenance media at a concentration of 4.5 x 106 cells/ml.
  3. Immerse the PCL scaffold in 70% ethanol O/N. After the solvent is evaporated, expose both sides of the scaffold to germicidal UV light (254 nm) for 5-8 min.
  4. Soak the PCL scaffold in a 20 µg/ml fibronectin solution at 37 °C for 1 hr. Insert the fibronectin-coated scaffold into the silicone membrane. Assemble the bioreactor as detailed in step 1.
  5. Distribute 40 µl of the cell suspension evenly on the secured PCL scaffold. Allow the cells to attach for 1-1.5 hr before adding an additional 1.5 ml fresh media to the vibration chamber.
  6. Culture the MSC-laden PCL scaffold statically for 3 days and refresh the media upon completion of the static culture.
  7. Impose selected vibration regimes to the cellular constructs. Note: As an example, cells are subjected to a 1-hr-on-1-hr-off (OF) vibration at 200 Hz with a w0 of ~40 μm for 12 hr per day for up to 7 days. Constructs subjected to vibratory stimulations are designated as Vib samples and those cultured statically in identical vibration chambers serve as static controls (Stat).

5. Biological Evaluations

  1. Collect 200 µl cell culture media from each chamber every other day (day 1, 3, 5, and 7) and pool the aliquots from the same sample together (800 µl each).
  2. Quantify the cellular production of matrix metalloproteinase-1 (MMP1) and HA using an MMP1 ELISA Development kit and a hyaluronan competitive ELISA kit, respectively, following the manufacturers’ procedure. Meanwhile, assay the production of soluble elastin precursor following the previously reported ELISA procedure.8
  3. Upon completion of the last vibration cycle at day 7, quickly remove the cellular constructs from the vibration chambers using sharp tweezers and briefly rinse them with cold phosphate buffered saline (PBS, 4 °C).
  4. For the live/dead staining, incubate the constructs with propidium iodide (1:2,000 in PBS) and Syto-13 (1:1,000 in PBS) simultaneously for 5 min at RT. Image the stained constructs with a multiphoton confocal microscope.
  5. Separately, snap-freeze the PBS-rinsed cellular constructs on dry ice and extract the total cellular RNA following a previously reported protocol for gene analysis.9
  6. Verify the quantity and quality of the extracted RNA using a UV-Vis spectrophotometer. RNA samples with A260/A280 and A260/A230 ratios of 1.8-2.2 are used for subsequent qPCR analysis.
  7. Reverse transcribe the RNA (500 ng/sample) into cDNA using a commercially available reverse transcription kit.
  8. Perform the PCR reaction on a real-time sequence detection system using a commercially available PCR master mix following the previously detailed procedure.8
  9. Analyze the qPCR results using commercial qPCR data analysis software. To ensure the reliability of the data analysis, multiple reference genes (YWHAZ, TBP, PPIA) are employed as internal controls, and the variance of specific primer efficiencies is taken into account.8

Results

The PCL scaffolds fabricated by electrospinning contain micron sized interstitial pores and randomly entangled fibers with an average diameter of 4.7 µm (Figure 4A). At a higher magnification, nanoscale grooves and pores are visible on individual fibers (Figure 4B). Coating of the scaffolds with fibronectin improves hydrophilicity and facilitates the initial cell adhesion/spreading on the PCL scaffold (unpublished observation).

Sinusoidal wavefo...

Discussion

Successful engineering of functional vocal fold tissues in vitro requires the recreation of a vocal fold-like microenvironment to mediate the behaviors of multipotent cells. It is generally accepted that tissue or organ structures reflect the functions they are required to perform.22 For vocal fold tissues, the high frequency vibrations that occur during phonation are proposed to be important for tissue maturation. In our study, PCL scaffolds are used to provide a ligament-like structural support whil...

Disclosures

No competing financial interests exist.

Acknowledgements

We thank Dr. Jeffrey Caplan for his training and advice on confocal imaging. We also thank the Keck Electron Microscopy Lab and Dr. Chaoying Ni for SEM assistance. This work is funded by National Institutes of Health (NIDCD, R01DC008965 and R01DC011377). ABZ acknowledges NSF Integrative Graduate Education & Research Traineeship (IGERT) program for funding.

Materials

NameCompanyCatalog NumberComments
silicone elastomer kitDow CorningSylgard 184cure the membrane at 100 C for 2 hr
PCLSigma Aldrich440744-500GMn ~ 80 kDa, dissolve overnight
chloroformSigma AldrichC7559-5VL
human bone marrow-derived MSCsLonzaPT-2501received with passage 2
MSC maintenance mediaLonzaPT-300110% FBS in basal media supplemented
with L-glutamine, gentamicin and amphotericin
Accutase cell dissociation reagentLife TechnologiesA11105-01
ethanolSigma AldrichE7023-500ML
fibronectinSigma AldrichF2006-1MG
MMP1 DuoSet ELISA kitR&D systemsDY901
HA ELISA kitEchelon Biosciences K-1200  
PBSLife Technologies14190-136
propidium iodide Life TechnologiesP1304MP
Syto-13 Life TechnologiesS7575
QuantiTect reverse transcription kit Qiagen205311
SYBR Green PCR master mixLife Technologies4309155
replacement speakerDAYTON audio
(via Parts Express)
DS90-8paper cone, full range (80-13000 Hz), 85dB
Ergo Micro torque screwdriverMountz# 020377torque range: 20-120 cN.m
stereo speaker selectorRadioShack40-244maximum power handling 50 W
function generator Agilent 33220Afrequency range 1 µHz- 20 MHz
power amplifier PYLE audioPylePro PT2400frequency response: 10 Hz-50 kHz, two speaker
channels
cell culture incubator Thermo Fisher Steri-Cult 3307
syringe pump New Era Pump SystemsNE-300
High voltage power supplySpellmanCZE 1000Routput voltage: 0-30 kV
scanning electron microscope JEOL-USAJSM-7400F
desk gold sputter coaterDenton VacuumDSK00V-0013
Doppler laser vibrometer PolytecPDV-100non-contact velocity measurement (0-22 kHz)
PCR sequence detection system Applied BiosystemsABI7300
multiphoton confocal microscopeZeissZeiss 510Meta NLO
UV-VIS Spectrophotometer NanoDrop Products
via Thermo Scientific
ND-2000
VibSoft Data Acquisition SoftwarePolytecacquisition bandwidth up to 40 MHz
Origin 8.5 data analysis software OriginLab
qbasePlus qPCR data analysis software BiogazelleV2.3
aluminium alloy McMaster-CarrAlloy 6061
acrylic blocksMcMaster-Carr
polycarbonate anti-humidity chamberMcMaster-CarrImpact-Resistant Polycarbonate
screws McMaster-Carr
electronic cable/wire
medical grade PVC tubingUS Plastic Corp.Tygon S-50-HLclear, biocompatible
10 mL syringe Becton Dickinson309604
21 G blunt ended needleSmall PartsNE-213PL-251-1/2" length
Alligator clip adapters RadioShack270-354fully insulated
8 mm biopsy punchSklar Surgical Instruments96-1152sterile, disposable
12 mm biopsy punchAcuderm (via Fisher Scientific)NC9998681
tissue culture flasksCorningcell culture treated

References

  1. Titze, I. R. Mechanical-Stress in Phonation. J. Voice. 8, 99-105 (1994).
  2. Titze, I. R. On the Relation Between Subglottal Pressure and Fundamental-Frequency in Phonation. J. Acoust. Soc. Am. 85, 901-906 (1989).
  3. Gray, S. D. Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33, 679-698 (2000).
  4. Thibeault, S. L., Gray, S. D., Bless, D. M., Chan, R. W., Ford, C. N. Histologic and rheologic characterization of vocal fold scarring. J. Voice. 16, 96-104 (2002).
  5. Hansen, J. K., Thibeault, S. L. Current understanding and review of the literature: Vocal fold scarring. J. Voice. 20, 110-120 (2006).
  6. Pittenger, M. F., et al. Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143-147 (1999).
  7. Hanson, S. E., et al. Characterization of Mesenchymal Stem Cells From Human Vocal Fold Fibroblasts. Laryngoscope. 120, 546-551 (2010).
  8. Tong, Z., Duncan, R. L., Jia, X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng. Part A. 19, 1862-1878 (2013).
  9. Tong, Z., Sant, S., Khademhosseini, A., Jia, X. Controlling the Fibroblastic Differentiation of Mesenchymal Stem Cells Via the Combination of Fibrous Scaffolds and Connective Tissue Growth Factor. Tissue Eng. Part A. 17, 2773-2785 (2011).
  10. Jones, D. L., Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11-21 (1038).
  11. Wang, J. H., Thampatty, B. P. Mechanobiology of Adult and Stem Cells. Int. Rev. of Cell Mol. Biol. 271, 301-346 (2008).
  12. Doroski, D. M., Levenston, M. E., Temenoff, J. S. Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly (ethylene glycol)-based hydrogels. Tissue Eng. Part A. 16, 3457-3466 (2010).
  13. Kim, B. S., Nikolovski, J., Bonadio, J., Mooney, D. J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17, 979-983 (1999).
  14. Webb, K., et al. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J. Biomech. 39, 1136-1144 (2006).
  15. Kim, Y. J., Sah, R. L. Y., Grodzinsky, A. J., Plaas, A. H. K., Sandy, J. D. Mechanical Regulation of Cartilage Biosynthetic Behavior - Physical Stimuli.. Arch. Biochem. Biophys. 311, 1-12 (1994).
  16. Titze, I. R., et al. Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521-1529 (2004).
  17. Kutty, J. K., Webb, K. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. Med. 4, 62-72 (2010).
  18. Farran, A. J. E., et al. Design and Characterization of a Dynamic Vibrational Culture System. J. Tissue Eng. Regen. Med. , (2011).
  19. Reneker, D. H., Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer. 49, 2387-2425 (2008).
  20. Wang, Y., Theobald, P., Tyrer, J., Lepper, P. The application of scanning vibrometer in mapping ultrasound fields. J. Phys.: Conf. Ser. 1, 167-173 (2004).
  21. Brown, W. S., Morris, R. J., Hollien, H., Howell, E. Speaking Fundamental-Frequency Characteristics as a Function of Age and Professional. J. Voice. 5, 310-315 (1991).
  22. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. Faseb J. 20, 811-827 (2006).
  23. Titze, I. R., et al. Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521-1529 (2004).
  24. Moore, J., Thibeault, S. Insights Into the Role of Elastin in Vocal Fold Health and Disease. J. Voice. 26, 269-275 (2012).
  25. Thibeault, S. L., Bless, D. M., Gray, S. D. Interstitial protein alterations in rabbit vocal fold with scar. J. Voice. 17, 377-383 (2003).
  26. Branski, R. C., Verdolini, K., Sandulache, V., Rosen, C. A., Hebda, P. A. Vocal fold wound healing: A review for clinicians. J. Voice. 20, 432-442 (2006).
  27. Clark, I. A., Swingler, T. E., Sampieri, C. L., Edwards, D. R. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell B. 40, 1362-1378 (2008).
  28. Silver, F. H., Horvath, I., Foran, D. J. Viscoelasticity of the vessel wall: The role of collagen and elastic fibers. Crit. Rev. Biomed. Eng. 29, 279-301 (2001).
  29. Kutty, J. K., Webb, K. Tissue Engineering Therapies for the Vocal Fold Lamina Propria. Tissue Eng. Part B: Rev. 15, 249-262 (2009).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Vocal Fold BioreactorIn Vitro Tissue EngineeringVibration StimulationMechanotransductionExtracellular MatrixMesenchymal Stem Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved