JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Described here is the establishment of a clinically relevant ex vivo mock cataract surgery model that can be used to investigate mechanisms of the injury response of epithelial tissues within their native microenvironment.

Abstract

The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.

Introduction

The clinically relevant, mock cataract surgery, ex vivo epithelial wound healing model described here was developed to provide a tool for investigating the mechanisms that regulate repair of epithelial tissues in response to an injury. Key features that were aimed for in creating this model included 1) providing conditions that closely replicated the in vivo response to wounding in a culture setting, 2) ease of modulating the regulatory elements of repair, and 3) ability to image the repair process, in its entirety, in real time. The challenge, therefore, was to create a culture model in which it was possible to study, and manipulate, epithelial wound repair in the cells’ native microenvironment. The availability of this wound-repair model opens new possibilities for identifying the endogenous signaling cues from matrix proteins, cytokines and chemokines that regulate the repair process. In addition, the model is ideal for examining how an epithelium is able to move as a collective sheet to re-epithelialize the wound area 2,3, and for determining the lineage of mesenchymal leader cells at the wound edge that function in directing the collective migration of the injured epithelium 4. This model also provides a platform with which to identify therapeutics that could promote effective wound healing and prevent aberrant wound repair5.

There are already a number of available wound-repair models, both in culture and in vivo, which have provided most of what is known about the wound repair process today. In animal injury models, such as cornea 6-12 and skin13-17, there is the opportunity to study the response of the tissue to wounding in the context of all the repair mediators that could be involved in the process, including contributions from the vasculature and nervous system. However, there are limitations to manipulating the experimental conditions in vivo, and it is not yet possible to conduct imaging studies of the repair response in vivo, continuously over time. In contrast, most in vitro wound-repair culture models, such as the scratch wound, can be easily manipulated and followed over time but lack the environmental context of studying wound healing in the in vivo tissue. While ex vivo models offer the advantage of studying the injury repair process continuously over time in the context of the cells’ microenvironment coupled with the ability to modulate the molecular regulators of repair at any time point in the process, there are few models that fit these parameters.

Here is described a procedure to generate highly reproducible ex vivo epithelial wound healing cultures that reproduce an epithelial tissue’s response to a physiological wounding. Using the chick embryo lens as a tissue source, an ex vivo mock cataract surgery is performed. The lens is an ideal tissue to use for these studies since it is self-contained within a thick basement membrane capsule, avascular, not innervated, and free of any associated stroma18,19. In the human disease, cataract surgery addresses vision loss due to opacification of the lens, and involves removal of the lens fiber cell mass, which comprises the bulk of the lens. Following cataract surgery vision is restored through the insertion of an artificial intraocular lens. The cataract surgery procedure, through removal of fiber cells, induces an injury response in the adjacent lens epithelium, which responds by re-epithelialization of the posterior area of the lens capsule that had been occupied by the fiber cells. In cataract surgery, as in most wound repair responses, there sometimes occurs an aberrant fibrotic outcome to the wound healing response, associated with the emergence of myofibroblasts, which in the lens is known as Posterior Capsule Opacification20-22. To generate the cataract surgery wound healing model, a cataract surgery procedure is mimicked in lenses removed from the chick embryo eye to produce a physiological injury. Microsurgical removal of lens fiber cells results in a very consistent circular wound area surrounded by the lens epithelial cells. This cell population remains firmly attached to the lens basement membrane capsule and is injured by the surgical procedure. The epithelial cells migrate onto the denuded area of the endogenous basement membrane to heal the wound, led by a population of vimentin-rich mesenchymal cells known in the repair process as leader cells1. With this model the response of an epithelium to injury can be easily visualized and followed with time in the context of the cells’ microenvironment. The cells are readily accessible to modifications of the expression or activation of molecules expected to play a role in wound repair. A powerful feature of this model is the ability to isolate and study migration-specific changes in the framework of wound healing. The ability to prepare large numbers of aged matched ex vivo wound healing cultures for studies is another advantage of this model. Thus, this model system provides a unique opportunity to tease apart mechanisms of wound repair and test therapeutics for their effect on the wound healing process. The ex vivo mock cataract surgery model is expected to have wide applicability, providing a critical resource for studying mechanisms of injury repair.

Protocol

The following protocol complies with the Thomas Jefferson University Institutional Animal Care and Use Committee guidelines and with the ARVO Statement for the Use of Animals in Vision Research.

1. Setup and Preparation of Lenses for Ex Vivo Wound Culture

  1. Place three 100 mm petri dishes in a sterile, laminar flow hood. Fill two of the petri dishes halfway with Tris/Dextrose buffer (TD buffer; 140 mM NaCl, 5 mM KCl, 0.7 mM Na2PO4, 5 mM D-glucose, 8.25 mM Tris Base, pH to 7.4 with HCl) at RT, leaving the third empty. Pre-warm culture media (Media 199 supplemented with, 1% L-glutamine and 1% penicillin/streptomycin) to 37oC.
    Note: The standard wound healing culture media is serum-free, as occurs in vivo; however, the wound-repair cultures can be grown successfully in defined media conditions that include serum or other factors.
  2. Remove fertile embryonic day 15 white leghorn chick egg from incubator (held at 37.7° C with gentle rocking)
  3. Place selected egg in the laminar flow hood and clean outside of shell with 70% ethanol from a wash bottle. Conduct all procedures below under aseptic conditions in the laminar flow hood, using sterile solutions and instruments.
  4. Crack egg and place contents into the empty 100 mm petri dish. Decapitate embryo using standard forceps and fine scissors. Place the chick embryo head in a petri dish containing TD buffer and properly dispose of the remainder of the embryo. Optionally keep the chick embryo heads in TD buffer for a short period of time, no longer than 15 min.
  5. Place the chick embryo head on a petri dish lid. Using high precision forceps, remove the lens along with its attached vitreous humor from the eye in the following sequence. Pinch the back of the eye with the forceps to create a small opening in the back of the eye.
  6. Then, grasp the vitreous humor with forceps and gently tug on the vitreous with a rolling motion, the vitreous with the lens attached will be dislodged from the eye. Place lens/vitreous in the remaining petri dish containing TD buffer. Allow the lenses to remain in TD buffer for no longer than 30 min.
  7. Move the lens to a new petri dish lid under a dissecting microscope. From this point on perform all steps under a dissecting microscope. With high precision forceps carefully brush away any ciliary body (pigmented cells) that were dislodged with the lens using the edge of the forceps, taking caution not to damage the lens tissue.
    Note: Removing the ciliary body ensures that cell types that are not endogenous to the lens are not included in the wound repair culture.
  8. Separate the lens from the vitreous humor with high precision forceps by pinching off the vitreous body from its association with the posterior lens capsule.
  9. Using high precision forceps transfer the lens into a small drop of TD buffer (about 200 µl) in a 35mm tissue culture dish.

2. Performing Mock Cataract Surgery

  1. Orient the lens in the drop of TD buffer in the 35 mm dish with the anterior aspect of the lens facing up.
    Note: The anterior of the lens is easily identified by the presence of a dense ring in the tissue that notes the border between the anterior and equatorial region of the lens epithelium. In contrast, there is an absence of markings on the posterior of the lens capsule to which the lens fiber cells are attached.
  2. Using two high precision forceps make a small incision (approximately 850µm) in the center of the anterior lens capsule, the thick basement membrane that surrounds the lens tissue, and its associated anterior lens epithelium, by grasping the tissue with one forceps in each hand and gently tugging in opposing directions.
  3. Remove the fiber cell mass, which makes up the bulk of the lens tissue, dislodging it from its attachments to the lens epithelium and surrounding lens capsule by hydro-elution (an approach used in classic cataract surgery, modeled in Figure 1A).
  4. Fill a 1 ml syringe with a 27.5 G needle tip with 300 µl of TD buffer. Insert the needle tip into the incision made in the anterior lens capsule, and about halfway into the lens.
  5. Gently depress the syringe injecting the TD buffer into the lens fiber cell mass. Inject between 50 and 200 µl TD, and never more than 300 µl. Observe the fiber cell mass loosening itself from the epithelium and lens capsule.
  6. Using high precision forceps, remove the loosened fiber cell mass from the lens through the anterior incision site.
    Note: This procedure leaves the posterior lens basement membrane capsule to which the fiber cells had been attached denuded of cells, and an injured lens epithelium just adjacent to this site.

3. Preparing the Wounded Lens for Ex Vivo Culture

  1. Flatten the lens capsular bag that results from the cataract surgery described above on the culture dish, cell side up, by making five cuts in the anterior aspect of the capsular bag.
  2. Cut perpendicular to the original incision site through to the equator of the lens. Flatten the resultant five “flaps” of lens capsule with attached epithelium on the culture dish capsule side down, cell side up. Note the ex vivo wounded lens now should take on a star or flowerlike shape (see Figure 1B).
  3. To secure the capsule to the dish, press softly down with the forceps at each point of the star. This will make a small indentation at the five most outside tips of the explant and result in sustained attachment to the dish.
    Note: It is possible to damage the capsule during this procedure and so it is important to secure the capsule to the dish as close to the tips of the flaps as possible, as well as to make the least amount of securing points as possible (generally two, maximum of three per flap).
  4. Remove the TD buffer from the 35mm dish and replace it with 1.5 ml of pre-warmed media. Cover the 35mm dish with its lid and place in the incubator (37°C, 5% CO2).

4. Separation of the Central Migration Zone (CMZ), where Re-epithelialization of the Wounded Area of the Posterior Capsule Occurs, from the Original Attachment Zone (OAZ) of Lens Epithelial Cells, for Quantitative Analysis.

Note: The cells begin to move into the CMZ region immediately in response to injury. By day one in culture enough cells are migrating across the CMZ for molecular and biochemical analysis, following separation of the CMZ and the OAZ by micro-dissection23. This protocol involves removal of one flap (OAZ) at a time from the wounded area of the capsule.

  1. Observe a demarcation, clearly visible under the dissecting microscope, between the OAZ and CMZ (see Figure 2A). Using two high precision forceps, grasp with both forceps at the edge of the OAZ/CMZ line, one just adjacent to the other, on either side of the line (see Figure 2A, B, arrow).
  2. Using one hand/one forceps on the CMZ side continue to hold onto the wounded culture, while with the other hand/forceps, gently pull the OAZ along the OAZ/CMZ line. The CMZ easily separates from the OAZ along this line. Continue along this line around the entire culture until the two regions are completely separated.
  3. Study the separated OAZ and CMZ fractions for molecular analysis such as RNA-Seq 24 or biochemical analysis such as western blot or co-immunoprecipitation 23,25.

Results

Ex Vivo Model created to study the wound healing process in the cells’ native microenvironment

To investigate mechanisms involved in regulating wound healing of an epithelium within the cells’ native microenvironment, a clinically relevant ex vivo mock cataract surgery model was created. This model is created from lens tissue which offers many advantages due to its intrinsic properties: 1) the lens is a self-contained organ surrounded by a thick basement membrane ...

Discussion

Here is described a technique for preparing a culture model of wound repair that involves performing an ex vivo cataract surgery on chick embryo lenses after their removal from the eye. The lens epithelium responds to this clinically relevant wounding with a repair process that closely mimics that which occurs in vivo, and shares features with wound repair in other epithelial tissues2,4. While the protocol is straightforward and simple to follow, performing mock cataract surgery with embryoni...

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

This work was supported by National Institutes of Health Grant to A.S.M. (EY021784).

Materials

NameCompanyCatalog NumberComments
Sodium Chloride (NaCl)Fisher ScientificS271-3Use at 140 mM in TD Buffer
Potassium Chloride (KCl)Fisher ScientificP217-500Use at 5 mM in TD Buffer
Sodium Phosphate (Na2HPO4)SigmaS0876Use at 0.7 mM in TD Buffer
D-glucose (Dextrose)Fisher ScientificD16-500Use at 0.5 mM in TD Buffer
Tris BaseFisher ScientificBP152-1Use at 8.25 mM in TD Buffer
Hydrochloric acidFisher ScientificA144-500Use to pH TD buffer to 7.4
Media 199GIBCO11150-059
L-glutamineCorning/CellGro25-005-CIUse at 1% in Media199
Penicillin/streptomycinCorning/CellGro30-002-CIUse at 1% in Media199
100 mm petri dishesFisher ScientificFB0875711Z
Stericup Filter UnitMilliporeSCGPU01REUse to filter sterilize Media
Dumont #5 forceps (need 2)Fine Science Tools11251-20
35 mm Cell Culture DishCorning430165
27 G 1 ml SlipTip with precision glide needleBD309623
Fine ScissorsFine Science Tools14058-11
Standard ForcepsFine Science Tools91100-12
Other Items Needed: General dissection instruments,  fertile white leghorn chicken eggs, check egg incubator (humidified, 37.7°C), laminar flow hood, binocular stereovision dissecting microscope

References

  1. Walker, J. L., et al. Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proceedings of the National Academy of Sciences of the United States of America. 107, 13730-13735 (2010).
  2. Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology. 10, 445-457 (2009).
  3. Riahi, R., Yang, Y., Zhang, D. D., Wong, P. K. Advances in wound-healing assays for probing collective cell migration. Journal of laboratory automation. 17, 59-65 (2012).
  4. Khalil, A. A., Friedl, P. Determinants of leader cells in collective cell migration. Integrative biology : quantitative biosciences from nano to macro. 2, 568-574 (2010).
  5. Walker, J. L., Wolff, I. M., Zhang, L., Menko, A. S. Activation of SRC kinases signals induction of posterior capsule opacification. Investigative ophthalmology & visual science. 48, 2214-2223 (2007).
  6. Sta Iglesia, D. D., Stepp, M. A. Disruption of the basement membrane after corneal debridement. Investigative ophthalmology & visual science. 41, 1045-1053 (2000).
  7. Pal-Ghosh, S., Pajoohesh-Ganji, A., Brown, M., Stepp, M. A. A mouse model for the study of recurrent corneal epithelial erosions: alpha9beta1 integrin implicated in progression of the disease. Investigative ophthalmology & visual science. 45, 1775-1788 (2004).
  8. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental eye research. 93, 927-936 (2011).
  9. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental eye research. 121, 178-193 (2014).
  10. Kuwabara, T., Perkins, D. G., Cogan, D. G. Sliding of the epithelium in experimental corneal wounds. Investigative ophthalmology. 15, 4-14 (1976).
  11. Sherrard, E. S. The corneal endothelium in vivo: its response to mild trauma. Experimental eye research. 22, 347-357 (1976).
  12. Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S., Fini, M. E. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Investigative ophthalmology & visual science. 44, 4237-4246 (2003).
  13. Escamez, M. J., et al. An in vivo model of wound healing in genetically modified skin-humanized mice. The Journal of investigative dermatology. 123, 1182-1191 (2004).
  14. Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., Longaker, M. T. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. The Journal of investigative dermatology. 103, 469-473 (1994).
  15. Tarin, D., Croft, C. B. Ultrastructural studies of wound healing in mouse skin. II. Dermo-epidermal interrelationships. Journal of anatomy. 106, 79-91 (1970).
  16. Croft, C. B., Tarin, D. Ultrastructural studies of wound healing in mouse skin I. Epithelial behaviour. Journal of anatomy. 106, 63-77 (1970).
  17. Winstanley, E. W. The epithelial reaction in the healing of excised cutaneous wounds in the dog. Journal of comparative pathology. 85, 61-75 (1975).
  18. Wormstone, I. M., Wride, M. A. The ocular lens: a classic model for development, physiology and disease. Philosophical transactions of the Royal Society of London. Series B, Biological. 366, 1190-1192 (2011).
  19. Danysh, B. P., Duncan, M. K. The lens capsule. Experimental eye research. 88, 151-164 (2009).
  20. Awasthi, N., Guo, S., Wagner, B. J. Posterior capsular opacification: a problem reduced but not yet eradicated. Archives of ophthalmology. 127, 555-562 (2009).
  21. Walker, T. D. Pharmacological attempts to reduce posterior capsule opacification after cataract surgery--a review. Clinical & experimental ophthalmology. 36, 883-890 (2008).
  22. Schmidbauer, J. M., et al. Posterior capsule opacification. International ophthalmology clinics. 41, 109-131 (2001).
  23. Menko, A. S., et al. A central role for vimentin in regulating repair function during healing of the lens epithelium. Molecular biology of the cell. 25, 776-790 (2014).
  24. Chauss, D., et al. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3 (Bethesda). 4, 1515-1527 (2014).
  25. Leonard, M., Zhang, L., Bleaken, B. M., Menko, A. S. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Developmental dynamics : an official publication of the American Association of Anatomists. 242, 469-484 (2013).
  26. Sieg, D. J., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature cell biology. 2, 249-256 (2000).
  27. Sieg, D. J., Hauck, C. R., Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of cell science. 112 (Pt 16), 2677-2691 (1999).
  28. Hauck, C. R., Hsia, D. A., Schlaepfer, D. D. The focal adhesion kinase--a regulator of cell migration and invasion). IUBMB life. 53, 115-119 (2002).
  29. Zhao, X., Guan, J. L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced drug delivery reviews. 63, 610-615 (2011).
  30. Menko, A. S., Bleaken, B. M., Walker, J. L. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Experimental cell research. 322, 133-148 (2014).
  31. Martin, P. Wound healing--aiming for perfect skin regeneration. Science. 276, 75-81 (1997).
  32. Ferguson, M. W., O'Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 839-850 (2004).
  33. Redd, M. J., Cooper, L., Wood, W., Stramer, B., Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 777-784 (2004).
  34. Nodder, S., Martin, P. Wound healing in embryos: a review. Anatomy and embryology. 195, 215-228 (1997).
  35. Gurtner, G. C., Werner, S., Barrandon, Y., Longaker, M. T. Wound repair and regeneration. Nature. 453, 314-321 (2008).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Ex VivoCataract SurgeryEpithelial Wound RepairLens EpitheliumLens CapsuleLens Fiber CellsVimentinMesenchymal ProgenitorsWound Healing ResponseNative Microenvironment

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved