JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe a technique to label neurons and their processes via anterograde or retrograde tracer injections into brain nuclei using an in vitro preparation. We modified an existing method of in vitro tracer electroporation by taking advantage of fluorescently labeled mouse mutants and basic optical equipment in order to increase labeling accuracy.

Abstract

We present a technique which combines an in vitro tracer injection protocol, which uses a series of electrical and pressure pulses to increase dye uptake through electroporation in brain explants with targeted laser illumination and matching filter goggles during the procedure. The described technique of in vitro electroporation by itself yields relatively good visual control for targetting certain areas of the brain. By combining it with laser excitation of fluorescent genetic markers and their read-out through band-passing filter goggles, which can pick up the emissions of the genetically labeled cells/nuclei and the fluorescent tracing dye, a researcher can substantially increase the accuracy of injections by finding the area of interest and controlling for the dye-spread/uptake in the injection area much more efficiently. In addition, the laser illumination technique allows to study the functionality of a given neurocircuit by providing information about the type of neurons projecting to a certain area in cases where the GFP expression is linked to the type of transmitter expressed by a subpopulation of neurons.

Introduction

In order to define a certain neuronal (micro)circuit, one must start by finding the various participants of said circuit, and their connection pattern. Ever since Waller's publication about neurofiber tracing through lesioning1 a large variety of neuroanatomical tracing techniques has been established. Some of these techniques can be applied in fixed tissue post mortem2-4, others rely on the active transport of the dye in live neurons, as discovered in 19715-6. The latter can be further subdivided in two groups discriminating between methods taking advantage of active retrograde (from the injected area to the source of a given projection, i.e. the somata of neurons that are projecting to said area) and active anterograde (from the injected area to the target of a given projection, i.e. the axonal projections and the axonal terminals of the labeled neurons) transport. Also, in some cases tracer material is injected into live animals which then survive the injection by several days or weeks (in vivo tracer injections), while in other cases explanted brains are injected and incubate for several hours after the injection in artificial cerebrospinal fluid (in vitro tracer injections).

In this protocol we modified an existing in vitro electroporation technique7-8 to label neuronal somata and processes in anterograde and retrograde tracing experiments using choleratoxin subunit-b and tetramethylrhodamine dextran as the tracing substances. The overall goal of this protocol is to provide neuroscientists with an efficient tool to trace neuronal connectivity patterns between different brain nuclei, while taking advantage of available transgenic mouse lines and basic optical equipment in order to increase targeting accuracy during tracer injections. Although the method of anterograde and retrograde tracing using choleratoxin and dextran amine and their respective fluorescently labeled conjugates is not new9-13 (as is the method of electroporation, e.g. Haas et al.14), the combination of tracer injections with electroporation in an in vitro preparation involving blocks of brain tissue is a more recent development7. Its main advantage over neuronal tracing techniques using the same type of tracer dyes in live animals is the increased labeling intensity, because of the higher efficiency with which the electroporated dye is being taken up by neurons. An additional advantage is the shortened incubation period (required for the dye transport) and its increased target accuracy during the tracer injection, because the experimenter has visual control over the target area of the injection. The latter also means that no expensive stereotactic equipment is required to find the nucleus or brain area of interest.

To additionally increase targeting accuracy, we took advantage of a transgenic mouse line, which expresses GFP in its glycinergic subpopulation of neurons15 and basic optical equipment consisting of a hand-held laser pointer of 405 nm wavelength and matching band-pass filtering goggles (450 - 700 nm). Thus, we achieved a significant further increase in targeting accuracy by identifying the injection area through its fluorescent signal and by providing a finer way to control for the dye spread within the injection area through the observation of the interaction between the indigenous GFP signal and the tracer fluorescence. Our technique also allows to uncover the functionality of a circuit along with its connectivity by identifying GFP-positive inhibitory neurons (or excitatory in other mouse lines) that were filled with the tracer.

In summary, we further enhanced a powerful neuroscientific tool to study the connectome of the vertebrate brain and assess the different neuroanatomical features of a given neurocircuit. By using transgenic mice along with inexpensive and widely available optical equipment we were able to significantly increase the targeting accuracy of our injections. Furthermore, the transgenic mice allowed us to identify the type of the traced connections, which helped uncovering the functionality of an inhibitory microcircuit in the auditory brainstem.

Access restricted. Please log in or start a trial to view this content.

Protocol

1. Optical Genotyping

1. Optical Genotyping of Mouse Pups

  1. Check for expression of the respective fluorescent marker using a laser pointer of the appropriate excitation wavelength (405 nm in the experiments described here) and corresponding filter goggles blocking the excitation wavelength but passing the emission wavelength (450 - 700 nm in the experiments described here). Point the laser pointer at the back of the head or the spinal cord of the mouse pup (see Figure 1). Avoid shining the laser into the eyes and lengthy exposure of the skin to laser light.

2. Optical Genotyping of Older Animals

  1. Deeply anesthetize the mouse (aged p14 to p138 in the experiments described here) with an overdose of pentobarbital through an intraperitoneal injection (120 mg/kg bodyweight). Confirm proper anesthesia by checking the animal's reflexes (briefly pinch the tip of the ear or one of the hind legs to elicit the retraction reflex of the ear or leg). 
  2. Note: Despite the use of an overdose of pentobarbital (120 mg/kg bodyweight) we refer to the injection procedure as "deep anesthesia" instead of euthanasia, because the animal is ideally still alive (i.e. its heart is still beating), when the surgery and the perfusion begin. This ensures a more efficient perfusion of the inner organs including the brain. 
  3. Once the animal does not show any reflexes, carefully remove the skin overlying the skull (Figure 2A) by making an incision in the skin covering the back of the head and cutting to the midsection of the skull. Expose the uncovered skull to laser light and observe the fluorescence through the filter goggles as described above. If a positive GFP signal is observed, proceed to step 2, if not, sacrifice the animal through decapitation (second/ensuring form of euthanasia following our IACUC regulations). 

Note: In even older mice ( >1 month) the fluorescence can be observed through the eyes of the animal.

2. Transcardial Perfusion and Brain Preparation

  1. Perfuse transcardially with ice-cold phosphate buffered saline (PBS; NaCl: 137 mM, KCl: 2.7 mM, KH2PO4: 1.76 mM, Na2HPO4: 10 mM) using a 30 G syringe needle to largely remove the blood from the animal.
    1. First, carefully open the rib cage with sharp scissors and then push the needle into the left ventricle of the heart. Start pumping the PBS into the heart and the aorta and immediately following this step open the right atrium of the heart with the scissors to allow for the blood to exit the body. Note: Perfusion takes 5 - 10 min depending on the size of the animal.
  2. After exsanguination through perfusion, decapitate the animal, secure its head with pin needles (or 30 G syringe needles) by piercing them through the eye sockets in a preparation dish and remove the brain from the skull.
    1. First, use sharp scissors to cut off the skin overlaying the skull: make a small incision in the back of the head, then cut along the midline on the dorsal side of the head, cut to the sides just caudally of the eyes of the animal and lastly cut in the caudal direction to completely remove the flaps of skin at the back of the head.
    2. Next, repeat the same cutting pattern for the skull itself, make sure to remove both cochleas in the process, because this will significantly simplify the removal of the brain stem in the end. After this procedure the caudal half of the brain should lie completely exposed.
    3. In the next step, use a sharp razor blade or a scalpel to cut through the whole forebrain at an angle of about 45° and about 2 mm rostral from the cerebellum. Scoop out the separated front half of the brain with a bent spatula.
    4. Use the spatula to elevate the caudal half of the brain at its rostral end and subsequently cut through the cranial nerves that are still connected to the brain stem on its ventral side. As an end result, the caudal half of the brain including the brainstem should fall freely off the rest of the prepared animal head.
    5. Flip the removed caudal half of the brain to expose its ventral side and cut along the coronal plane just rostral (for the anterograde injections) or just caudal (for the retrograde injections) of the ventrally located "bulbs" containing the trapezoid body (see step 2.3).
      1. Always use a sharp razor blade or a scalpel for the cutting procedure to minimize cell death caused by excessive mechanical stress on the tissue. As an end result, a brain explant spanning about 1 cm in length and containing the complete superior olivary complex along other brain regions should have been obtained.

Note: This protocol demonstrates the procedure for a tracer injection into the trapezoid body located in the auditory brainstem. Adapt the location and orientation of the cutting planes and injection sites as needed. If the fluorescing brain regions of interest lie close enough to the brain surface, so that they can be identified and injected without cutting the brain (see Figure 2B), then the coronal cutting step can be omitted.

  1. Identify the trapezoid body as two ventral prominent "bulbs" containing the ventral nucleus of the trapezoid body (VNTB).

Note: For further anatomical reference regarding the approximate stereotactic location of these cutting planes, see Franklin & Paxinos, 2008. Panel 78 of the atlas, Bregma ~ -5.7 mm shows the medial nucleus of the trapezoid body (=MNTB) labeled as "Tz". Panel 69 shows the ventral nucleus of the trapezoid body (VNTB) labeled as "MVPO" (medioventral periolivary nucleus)19.

3. Anterograde/Retrograde Tracing

Note: Perform all following procedures at RT (25° C).

  1. After cutting, place the brainstem explant in a preparation dish containing oxygenated (95% O2, 5% CO2) dissecting solution (NaCl: 125 mM, KCl: 2.5 mM, MgCl2: 1 mM, CaCl2: 0.1 mM, glucose: 25 mM, NaH2PO4: 1.25 mM, NaHCO3: 25 mM, ascorbic acid: 0.4 mM, myo-inositol: 3 mM, pyruvic acid: 2 mM), securing it with 30 G syringe needles. Ensure that the area of injection is facing upwards.
  2. Pull injection pipettes from borosilicate glass and fill them with one of the following three solutions: a) a 1.0 mg/ml solution of choleratoxin subunit-b conjugated to an Alexa fluorophore 555 in PBS12-13 (mainly used for retrograde transport), b) a 1%-dilution in 0.9% saline of dextran tetramethylrhodamine 555 (3,000 MW, mainly used for retrograde transport) or c) a 1%-dilution in 0.9% saline of 10,000 MW dextran-TRITC 555 (mainly used for anterograde transport).
    1. Ensure that injection pipette resistances range from 2.5 to 3.5 MOhm and that they are manufactured in 3 - 4 pulling cycles. For the experiments described here, achieve this by selecting a pre-programmed pulling algorithm on the pipette puller.
  3. Illuminate the brain explant using a statically mounted laser pointer of the appropriate wavelength (item No. 2 in Figure 3A; 405 nm wavelength in the experiments described here). Use the laser pointer as a guide for the injections, and aim the laser beam at the fluorescently labeled brain nucleus or cells of interest that will be injected.
  4. Find and observe the illuminated target area through a binocular microscope while wearing the compatible filter goggles (450 - 700 nm band-pass filter in the experiments described here). Insert the injection electrode via the micromanipulator into the area of interest.
  5. Inject the tracer substance. The injections consist of 2 - 10 pressure pulses at 15 psi for 50 msec each, using a pressure injection device, directed perpendicular into the region of interest (ROI) within the brain section. Administer each pressure pulse at intervals of 10 - 15 sec to allow for the dye to spread.
  6. In the case of the tetramethylrhodamine (TRITC) injections, additionally stimulate electrically to enhance the dye uptake through electroporation with the electrode placed in the brain area of interest (MNTB and VNTB in the experiments described here).
    1. Use 8 TTL pulses of 8 Volts for 50 msec with 50 msec interpulse intervals, driven by a stimulator and amplified to 55 V with a stimulation isolation unit (items No. 7 and 9 in Figure 3B). Use 10 - 20 repetitions of this protocol, administered over several minutes7,8. Make sure to ground the electrode properly - the grounding wire should be connected to the bath solution!
  7. Check for success of the injection. Since a fluorescent tracer with a longer emission wavelength is also emitting a fluorescent signal upon laser excitation with shorter wavelengths, visually check for the dye uptake/spread in the injected target area while illuminating the area with the laser and observing through the filter goggles.

4. Incubation

  1. After the injection, incubate the brainstems in oxygenated artificial cerebrospinal fluid (ACSF; NaCl: 125 mM, KCl: 2.5 mM, MgCl2: 1 mM, CaCl2: 2 mM, glucose: 25 mM, NaH2PO4: 1.25 mM, NaHCO3: 25 mM, ascorbic acid: 0.4 mM, myo-inositol: 3 mM, pyruvic acid: 2 mM, bubbled with 95% O2 - 5% CO2) at room temperature (RT, 25° C) for 1 - 4 hr, while the dye is being transported. Bubble the solution during the entire incubation period.
  2. Subsequently, transfer the brainstems in 4% paraformaldehyde (PFA) dissolved in PBS (approx. 100 ml; pH 7 for the PFA/PBS mix) and incubate them at 4° C to allow post-fixation overnight (O/N).

5. Tissue Slicing and Mounting

  1. The next day, wash the brainstem three times in PBS (5 min for each washing step), cover it in 4% agar and then cut into 50 - 80 μm thick slices on a vibratome. Mount slices using a mounting medium on a glass slide, and coverslip.
  2. Optionally, label the sections with fluorescent Nissl for 25 min (for example blue Nissl at a 1:100 dilution in AB media).
    1. To prepare AB media, mix 250 ml of 0.2 M phosphate buffer (PB; 51 mM KH2PO4, 150 mM Na2HPO4), 15 ml 5 M NaCl, 15 ml 10% Triton-X, 220 ml ddH2O and 5 g bovine serum albumine.
    2. Precede and succeed the Nissl labeling step by 3 washing steps in PBS (10 min each).

Note: In cases where thicker sections need to be mounted and analyzed (in experiments described here such slices were 100 - 500 microns thick to preserve axonal connections over bigger distances), the technique can be combined with tissue clearing. We found the ClearT212 to be successful20. When a tissue clearing step is included, perform it before mounting the sections.

Access restricted. Please log in or start a trial to view this content.

Results

Figures 1 and 2 show how the laser pointer and laser goggles can be used to quickly and inexpensively genotype GFP positive animals from a litter. In cases of young mouse pups, the technique can be used to noninvasively identify GFP label in the animal's brains through the skull and overlying skin (Figure 1A - D). Emitted fluorescence can be seen through the skin and the skull of mouse pups at least up to postnatal day 3 (Figure 1C). The procedure is shown ...

Access restricted. Please log in or start a trial to view this content.

Discussion

A general strength of in vitro tracer electroporation, as opposed to in vivo tracing studies, is that it gives researchers better access to the brain area of interest and hence, does not involve expensive stereotactic (and often electrophysiological) equipment. In addition, the survival period required for the brain explants spans only a few hours (1 - 4) instead of days or even weeks in the case of in vivo tracer injections (see a detailed review on the use of dextran amines and other tra...

Access restricted. Please log in or start a trial to view this content.

Disclosures

We have nothing to disclose.

Acknowledgements

Supported by NIH/NIDCD R01 DC 011582. Imaging experiments were performed in the University of Colorado Anschutz Medical Campus Advanced Light Microscopy Core supported in part by NIH/NCRR Colorado CTSI Grant Number UL1 RR025780 and the Rocky Mountain Neurlogical Disorders Core Center Grant NIH P30NS048154. Dr. Sascha du Lac from the Salk Institute provided us with the GlyT2-GFP mice.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Sodium chlorideSigma-AldrichS7653All chemicals are from Sigma-Aldrich, unless noted otherwise.
Potassium chloride P9333
Potassium phosphate monobasicP5655
Sodium phosphate di-basicS907
Magnesium chlorideM2670
Calcium chlorideC5080
GlucoseG7528
Sodium bicarbonateS6297
Ascorbic acidA4544
Myo-inositolI5125
Sodium pyruvateP2256
Bovine serum albumineA2153optional, for additional (immuno)histochemistry
Triton-X-100X100optional, for additional (immuno)histochemistry
Poly(ethylene glycol), 8000 MWP2139optional, for brain clearing
FormamideFisher ScientificF84optional, for brain clearing
Choleratoxin subunit-bMolecular ProbesC-34776 (Alexa 555) 
Dextrane tetramethyl-rhodamineMolecular ProbesD-7162 (Alexa 555)
Fluorescent NisslInvitrogenN-21479 (blue)optional
ParaformaldehydeFisher ScientificSF93
AgaroseInvitrogen16520
Fluoromount-GSouthern Biotech0100-01
Pentobarbi-talVortech PharmaceuticalsFatal-Plus 
Borosilicate glass filamentsHarvard ApparatusG150F-10
Pipette pullerZeitz Instruments, GermanyDMZ Universal Puller
Perfusion setupCustom-made
Laser pointer laserpointerpro.com, Hong KongHK-88007294 (405 nm)
Filter/safety gogglesDragon Lasers, ChinaLSG09 (band-pass 450-700 nm)
Bionocular microscope Wild Heerbrugg, SwitzerlandWild M3Equipped with high-intensity illuminator (MI-150; Dolan-Jenner Inc.) 
PicospritzerParker InstrumentsPicospritzer III
PC with installed MC Stimulus softwareMulti Channel Sys-tems, Germany (software)
2-channel stimulatorMulti Channel Sys-tems, GermanySTG-1002
Stimulation isolation unitA.M.P.I., IsraelIso-Flex
MicromanipulatorNarishige, JapanYOU-1
VibratomeLeica, GermanyVT1000S

References

  1. Waller, A. Experiments on the sections of glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibers. Philos. Trans. R. Soc. Lond. 140, 423-429 (1850).
  2. Fink, R. P., Heimer, L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369-374 (1967).
  3. Nauta, W. J. Selective silver impregnation of degenerating axons in the central nervous system. Stain Technol. 27, 175-179 (1952).
  4. Ramón y Cajal, S. Histologie du système nerveux de l'Homme et des vertébrés. , Maloine, Paris. (1911).
  5. Kristensson, K., Olsson, Y. Uptake and retrograde transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropathol. 19, 1-9 (1971).
  6. Kristensson, K., Olsson, Y. Retrograde axonal transport of protein. Brain Res. 29, 363-365 (1971).
  7. Burger, R. M., Cramer, K. S., Pfeiffer, J. D., Rubel, E. W. Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. J. Comp. Neurol. 481, 6-18 (2005).
  8. Ford, M. C., Grothe, B., Klug, A. Fenestration of the calyx of Held occurs sequentially along the tonotopic axis, is influenced by afferent activity, and facilitates glutamate clearance. J. Comp. Neurol. 514, 92-106 (2009).
  9. Glover, J. C., Petursdottir, G., Jansen, J. K. S. Fluorescent dextran amines used as axonal tracers in the nervous system of chicken embryo. J. Neurosci. Methods. 18, 243-254 (1986).
  10. Trojanowski, J. Q., Gonatas, J. O., Gonatas, N. K. Conjugates of horseradish peroxidase (HRP) with cholera toxin and wheat germ agglutinin are superior to free HRP as orthograde transported markers. Brain Res. 223, 381-385 (1981).
  11. Trojanowski, J. Q., Gonatas, J. O., Steiber, A., Gonatas, N. K. Horseradish peroxsidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrograde transported markers than free HRP. Brain Res. 231, 33-50 (1982).
  12. Conte, W. L., Kamishina, H., Corvin, J. V., Reep, R. L. Topography in the projections of lateral posterior thalamus with cingulate and medial agranular cortex in relation to circuitry for directed attention and neglect. Brain Res. 1240, 87-95 (2008).
  13. Conte, W. L., Kamishina, H., Reep, R. L. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat. Protoc. 4, 1157-1166 (2009).
  14. Haas, K., Jensen, K., Sin, W. C., Foa, L., Cline, H. T. Targeted electroporation in Xenopus tadpoles in vivo- from single cells to the entire brain. Differentiation. 70, 148-154 (2002).
  15. Zeilhofer, H. U., et al. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J. Comp. Neurol. 482, 123-141 (2005).
  16. Poyatos, I., Ponce, J., Aragön, C., Giménez, C., Zafra, F. The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Brain. Res. Mol. Brain Res. 49, 63-67 (1997).
  17. Gong, S., et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 425, 917-925 (2003).
  18. Heintz, N. Bac to the future: the use of BAC transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861-870 (2001).
  19. Franklin, K. B. J., Paxinos, G. The Mouse Brain in Stereotaxic Coordinates. , 3rd ed, Elsevier/Academic Press. New York. (2008).
  20. Kuwajima, T., Sitko, A. A., Bhansali, P., Jurgens, C., Guido, W., Mason, C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 140, 1364-1368 (2013).
  21. Wouterlood, F. G., Jorritsma-Byham, B. The anterograde neuroanatomical tracer biotinylated dextran amine: comparison with the tracer PHA-L in preparations for electron microscopy. J. Neurosci. Methods. 48, 75-87 (1993).
  22. Lanciego, J. L., Wouterlood, F. G. A half century of experimental neuroanatomical tracing. J. Chem. Neuroanat. 42, 157-183 (2011).
  23. Rodriguez-Contreras, A., Silvio, J., van Hoeve, S., Habets, L. P., Locher, H., Borst, J. G. G. Dynamic development of the calyx of Held synapse. PNAS. 105 (14), 5603-5608 (2008).
  24. Albrecht, O., Dondzillo, A., Mayer, F., Thompson, J. A., Klug, A. Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Front. Neural Circuits. 8, 83(2014).
  25. Benson, D. A., Teas, D. C. Single unit of binaural interaction in the auditory cortex of the chinchilla. Brain Res. 103, 313-338 (1976).
  26. Koka, K., Jones, H. G., Thornton, J. L., Lupo, J. E., Tollin, D. J. Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera). Hear Res. 272 (1-2), 135-147 (2011).
  27. Ryan, A. Hearing sensitivity of the mongolian gerbil, Meriones unguiculatus. J. Acoust. Soc. Am. 59 (5), 1222-1226 (1976).
  28. Zwicker, E., Fastl, H. Psychoacoustics Facts and Models. , Springer. (1990).
  29. Chu, G., Hayakawa, H., Berg, P. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15 (3), 1311-1326 (1987).
  30. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., Chizmadzhev, Y. A. Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J. 60 (4), 804-811 (1991).
  31. Elias, L., Kriegstein, A. Organotypic Slice Culture of E18 Rat Brains. J. Vis. Exp. (6), e235(2007).
  32. Gähwiler, B. H. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods. 4 (4), 329-342 (1981).
  33. Tallini, Y. N., et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 27 (3), 391-397 (2006).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Laser guided Neuronal TracingBrain ExplantsIn Vitro Tracer InjectionElectroporationFluorescent Genetic MarkersBand pass Filter GogglesNeurocircuit Functionality

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved