登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A two dimensional model material of discotic zirconium phosphate was developed. The inorganic crystal with lamellar structure was synthesized by hydrothermal, reflux, and microwave-assisted methods. On exfoliation with organic molecules, layered crystals can be converted to monolayers, and nematic liquid crystal phase was formed at sufficient concentration of monolayers.

摘要

Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior.

引言

盘状胶体粘土,沥青质,红细胞,和珍珠层的形式自然丰富。一系列在许多工程系统的应用,包括聚合物纳米复合材料1,仿生材料,功能性膜2,盘状液晶研究3和皮克林乳化稳定剂4是基于盘状胶体纳米盘开发。与均匀性和低的多分散性纳米盘是研究阶段和液晶的转换重要。磷酸锆(的ZrP)是一种合成的纳米盘具有良好有序的层状结构和可控纵横比(厚度比直径)。因此,不同的合成的ZrP的探索有助于建立盘状液晶体系的基本认识。

的ZrP的结构通过Clearfield的和Stynes ​​于1964年5阐明。对于的ZrP,热液的层状结晶的合成和回流方法通常采用6,7-。水热法给出了大小为400到25%6内1500纳米和多分散性良好的控制,而回流法给出相同的持续时间的时间较小的晶体。微波加热已被证明是纳米材料8的合成有前途的方法。但是,也有根据微波辅助路线描述的ZrP的合成没有说明书。在大小,纵横比,并通过水热法晶体生长机制的有效控制系统是我们小组6的研究。

的ZrP可以容易地剥离成在水性悬浮液的单层,并且剥离的ZrP已经确立作为液晶材料在程的组3,9-13。到目前为止,剥离的ZrP纳米盘具有各种直径,说​​不同的长宽比,已研究得出结论,较大的ZrP有我(各向同性)-N(向列)过渡在较低CON中心定位比较小的ZrP 3。上向列型液晶相的形成的多分散性3,9和温度10,11-效果也已被考虑。此外,其他的阶段,如思迈特液晶相,已研究以及13,14。

在本文中,我们将演示实验实现这样的胶体的ZrP纳米盘悬挂。层状的ZrP的结晶通过不同的方法合成,然后在含水介质中被剥离,以获得单层纳米盘。最后,我们显示由该系统表现出液晶相转变。这些磁盘的一个值得注意的方面是它们的高度各向异性性质的厚径比为0.0007的范围内,以0.05取决于磁盘3的尺寸。高度各向异性的单层纳米盘建立一个模型系统来研究纳米盘的悬浮液的相变。

研究方案

1.采用水热法α-的ZrP的合成

  1. 溶解6克氧氯化锆八水合物(ZrOCl 2·8H 2 O) 3.75毫升去离子(DI)水在150毫升圆底烧瓶中。
  2. 加加入48ml 15 1M磷酸(H 3 PO 4)溶液,以在步骤1.1,随后通过加入8.25毫升剧烈搅拌下的去离子(DI)水中制备的ZrOCl 2溶液。
  3. 倒入胶状混合物产生到80毫升体积的聚四氟乙烯内衬压力容器。船放入不锈钢外壳和盖子,高压板组成的水热釜中,然后拧好。
  4. 放置热液高压釜成对流烘箱中在200℃下24小时。
  5. 反应后,使水热高压釜至环境却下冷却8小时至室温。
  6. 收集在离心管中α-的ZrP磁盘使用离心机2冷却后,500×g离心10分钟。收集在废物处理容器内的液体部分,因为上层液体含有未反应的磷酸具有腐蚀性。
    1. 随后,在2500 xg离心再次加40ml水到α-的ZrP,涡旋1分钟并离心10分钟。重复此步骤3次,以确保所有的酸被冲走。
  7. 在烘箱中在65℃下8小时,然后干燥的ZrP-水粘混合物用杵和研钵研磨它。

2.回流法合成α-的ZrP的

  1. 混合6克ZrOCl 2·8H 2 O的用在150ml的50毫升为12μm磷酸圆底烧瓶中。
  2. 在步骤2.1中制备的混合物是在94℃24小时在油浴中回流。
  3. 用DI水以下相同协议三次洗产物,在步骤1.6,然后在烘箱中于65℃干燥8小时。
  4. 用研钵和股票˚F研磨干笨重的样品成粉末或以后使用。

通过微波辅助法α-的ZrP的合成3。

  1. 添加1克ZrOCl 2·8H 2 O的为9个毫升12 1M磷酸溶液,并搅拌所得的混合物以及在20ml的闪烁瓶中。
  2. 倾将5ml上述混合物的成用于微波反应器中指定的10毫升玻璃容器中。
  3. 在150℃,在300psi的压力极限设定反应温度和使反应发生1小时。
  4. 反应后,让该玻璃容器中冷却约15分钟,然后按照相同的程序,对酸洗和α-的ZrP晶体的干燥步骤1.6-1.7。

4.剥离分层α-的ZrP成单层

  1. 分散1克α-的ZrP的入20ml的闪烁小瓶10毫升DI水。
  2. 添加2.2毫升TBAOH(40重量%)的给它,涡旋至少40秒。注意的Zr的摩尔比:TBAOH保持为1:1。
  3. 超声处理所得浓缩悬浮液1-2小时,并留下了3天,以允许TBA +离子和结晶的完全剥离的充分插。任选地,浓缩悬浮液可以稀释,用水(2至3倍稀释),以获得更好的剥离。
  4. 离心在高转速(2,500 xg离心)的剥离样品1小时以除去沉降在底部的部分剥离晶体。收集顶端部分在另一个容器(剥离的ZrP)和直到无沉淀物被发现,重复上述步骤。

结果

图1a-c示出从水热,回流,以及微波辅助的方法,分别得到α-的ZrP纳米盘的SEM图像。据观察,α-的ZrP纳米盘显示在形状和取决于合成条件和制备的方法的不同厚度六边形。从我们的第6组先前报告的研究表明,晶体生长时间48小时或以上,磁盘的边缘变得清晰。通常,回流法收率纳米盘的小型化,并在通过在类似的反应条件,包括磷酸和反应时间6,7-<...

讨论

回流方法是使α-的ZrP较小大小均匀的直径和厚度一个很好的选择。类似于水热法,回流法是通过准备时间的限制。在一般情况下,它需要的晶体生长更长的时间。

用于回流法需要较长的反应时间可能导致具有较大尺寸纳米盘。剥离纳米盘的平均尺寸通过动态光散射(DLS)测得的。在这项研究中,已剥离的ZrP纳米盘的尺寸为1021.5 nm的19.6%的多分散性,用7.0%多分散289.8纳米,?...

披露声明

There is nothing to disclose.

致谢

This work is partially supported by NSF (DMR-1006870) and NASA (NASA-NNX13AQ60G). X. Z. Wang acknowledges support from the Mary Kay O'Connor Process Safety Center (MKOPSC) at Texas A&M University. We also thank Min Shuai for her guidance.

材料

NameCompanyCatalog NumberComments
Material
Zirconyl Chloride OctahydrateFischer Scientific (Acros Organics)AC20837-500098% + 
o-Phosphoric AcidFischer ScientificA242-1>= 85 %
Tetra Butyl Ammonium HydroxideAcros Organics (Acros Organics)AC17661002540% wt. (1.5M)
NameCompanyCatalog NumberComments
Equipment
Reaction OvenFischer ScientificCL2 centrifugeIsotemperature Oven (Temperature Upto 350 C)
Centrifuge Thermo ScientificNot Available Rotation Speed : 100 - 4000 rpm
Microwave ReactorCEM CorporationDiscover and Explorer SPTemp. Upto 300oC, Power upto 300W, Pressure upto 30bar

参考文献

  1. Usuki, A., Hasegawa, N., Kato, M. Polymer-clay nanocomposites. Adv Polym. 179, 135-195 (2005).
  2. Varoon, K., et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science. 334, 72-75 (2011).
  3. Mejia, A. F., et al. Aspect ratio and polydispersity dependence of isotropic-nematic transition in discotic suspensions. Phys. Rev. E. 85, 061708 (2012).
  4. Bon, S. A. F., Colver, P. J. Pickering miniemulsion polymerization using Laponite clay as a stabilizer. Langmuir. 23, 8316-8322 (2007).
  5. Clearfield, A., Stynes, J. A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J. Inorg. Nucl. Chem. 26, 117-129 (1964).
  6. Shuai, M., Mejia, A. F., Chang, Y. W., Cheng, Z. Hydrothermal synthesis of layered alpha-zirconium phosphate disks: control of aspect ratio and polydispersity for nano-architecture. Crystengcomm. 15, 1970-1977 (2013).
  7. Sun, L., Boo, W. J., Sue, H. -. J., Clearfield, A. Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J. Chem. 31, 39-43 (2007).
  8. Gawande, M. B., Shelke, S. N., Zboril, R., Varma, R. S. Microwave-sssisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Accounts Chem. Res. 47, 1338-1348 (2014).
  9. Chang, Y. -. W., Mejia, A. F., Cheng, Z., Di, X., McKenna, G. B. Gelation via Ion Exchange in Discotic Suspensions. Phys. Rev. Lett. 108, 247802 (2012).
  10. Wang, X., et al. Thermo-sensitive discotic colloidal liquid crystals. Soft Matter. 10, 7692-7695 (2014).
  11. Li, H., Wang, X., Chen, Y., Cheng, Z. Temperature-dependent isotropic-to-nematic of charged nanoplates. Phys. Rev. E. 90, 020504 (2014).
  12. Chen, M., et al. Observation of isotropic-isotropic demixing in colloidal platelet-sphere mixtures. Soft Matter. 11 (28), 5775-5779 (2015).
  13. Sun, D., Sue, H. -. J., Cheng, Z., Martinez-Raton, Y., Velasco, E. Stable smectic phase in suspensions of polydisperse colloidal platelets with identical thickness. Phys. Rev. E. 80, 041704 (2009).
  14. Wong, M., et al. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nat. Commun. 5, 3589 (2014).
  15. Diaz, A., et al. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem. Commun. 48, 1754-1756 (2012).
  16. Kim, H. -. N., Keller, S. W., Mallouk, T. E., Schmitt, J., Decher, G. Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions. Chem. Mater. 9, 1414-1421 (1997).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

111

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。