JoVE Logo
Faculty Resource Center

Sign In





Representative Results






A Method for Evaluating Timeliness and Accuracy of Volitional Motor Responses to Vibrotactile Stimuli

Published: August 2nd, 2016



1Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 2Institute of Biomaterials and Biomedical Engineering, University of Toronto

This article describes a technique for applying vibrotactile stimuli to the thigh of a human participant, and measuring the accuracy and reaction time of the participant's volitional response for various combinations of stimulation location and frequency.

Artificial sensory feedback (ASF) systems can be used to compensate for lost proprioception in individuals with lower-limb impairments. Effective design of these ASF systems requires an in-depth understanding of how the parameters of specific feedback mechanism affect user perception and reaction to stimuli. This article presents a method for applying vibrotactile stimuli to human participants and measuring their response. Rotating mass vibratory motors are placed at pre-defined locations on the participant's thigh, and controlled through custom hardware and software. The speed and accuracy of participants' volitional responses to vibrotactile stimuli are measured for researcher-specified combinations of motor placement and vibration frequency. While the protocol described here uses push-buttons to collect a simple binary response to the vibrotactile stimuli, the technique can be extended to other response mechanisms using inertial measurement units or pressure sensors to measure joint angle and weight bearing ratios, respectively. Similarly, the application of vibrotactile stimuli can be explored for body segments other than the thigh.

Artificial sensory feedback (ASF) can be defined as the practice of providing real-time biological information to individuals, often compensating for compromised proprioception or other sensory mechanism. ASF has been long used in the realm of rehabilitation of injured or disabled persons to assist in recovering of aspects of physical function and movement1-3, allowing individuals to control physical processes that once were an involuntary response of the autonomic nervous system4. A subcategory of ASF, biomechanical biofeedback, uses external sensors to measure parameters relating to balance or gait kinematics, and communic....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The following protocol was approved by the Research Ethics Board at Holland Bloorview Kids Rehabilitation Hospital.

1. Motor Calibration

  1. Connect the microcontroller board to the computer using an USB port.
  2. Using the original microcontroller software, upload the custom script, "Motor_and_AccelerometerTest.ino" to the board using the USB connection by clicking the "Upload" icon, denoted by the circled right arrow.
    1. Ensure that the vibration level is set to zer.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 4 illustrates the calibration curves identifying the PWM value for a 180 Hz vibration frequency of a single motor. Starting at a 50% duty cycle, the PWM values are iterated until the primary frequency spike occurs at 180 Hz. Successful calibration trials should show a clear spike at the primary vibration frequency. Poor fixation of the accelerometer to the motor, or of the motor to a support surface may result in a more diffuse FFT without a clear spike. In this situation, the calibration trial sh.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The purpose of this protocol is to provide the framework for evaluating stimulation parameters in vibrotactile ASF applications. Specifically, it examines the effects of vibration frequency, amplitude, location, and sequence on user sensorimotor response. This framework can be built upon and expanded to incorporate additional or alternative types of user response that may be more clinically relevant, such as bending a joint or shifting weight from one leg to another. These types of changes would require slightly differen.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol was developed for research supported by the Natural Sciences and Engineering Research Council of Canada (grant RGPIN 401963).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Vibrating Pager Motors Precision Microdrives Model 310-101 Coin eccentric rotating mass motors.  As many as necessary to test all locations and interactions of interest
Tri-axis Accelerometer Dimension Engineering ADXL 335 Advanced analog accelerometer. 500Hz bandwidth, 3.5-15V input.  Designed for motion, tilt, and slope measurement, as well as vibration and shock sensing
Arduino Uno Arduino DEV-11021 Microcontroller board for communicating with the tri-axis accelerometer
Arduion Mega 2560 Arduino DEV-11061 Microcontroller board for interfacing with the vibration motors. 
LabVIEW National Instruments Data acquisition software used to control motors and display accelerometer signals
Arduino IDE Software Arduino v. 1.6.5
Push-Button Bridges Buddy Button Wired switch featuring a 2.5in/6.35cm activation surface that provides an auditory click and tactile feedback.
Dedicated haptic motor driver Texas Instruments DRV2605L Can be used to replace the entire amplification circuit described in Step 1.
Flexible wearable goniometer Biometrics Ltd. SG110 Twin axis flexible goniometers to measure angles in up to two planes of movement that can be used in lieu of the push button to measure joint movement in response to stimuli.

  1. Tate, J. J., Milner, C. E. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys. Ther. 90 (8), 1123-1134 (2010).
  2. Onate, J. A., Guskiewicz, K. M., Sullivan, R. J. Augmented feedback reduces jump landing forces. J. Orthop. Sports Phys. Ther. 31 (9), 511-517 (2001).
  3. Cholewiak, R. W. The perception of tactile distance: Influences of body site, space, and time. Perception. 28 (7), 851-875 (1999).
  4. Zhang, Z., Wu, H., Wang, W., Wang, B. A smartphone based respiratory biofeedback system. Proc. 2010 3rd Int. Conf. Biomed. Eng. Informatics. 2, 717-720 (2010).
  5. Wentink, E. C., Mulder, A., Rietman, J. S., Veltink, P. H. Vibrotactile stimulation of the upper leg: Effects of location, stimulation method and habituation. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. , 1668-1671 (2011).
  6. Rusaw, D., Hagberg, K., Nolan, L., Ramstrand, N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?. J. Rehabil. Res. Dev. 49 (8), 1239-1254 (2012).
  7. Goodworth, A. D., Wall, C., Peterka, R. J. Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 17 (4), 397-408 (2009).
  8. Asseman, F., Bronstein, A. M., Gresty, M. A. Using vibrotactile feedback of instability to trigger a forward compensatory stepping response. J. Neurol. 254 (11), 1555-1561 (2007).
  9. Fan, R. E., Culjat, M. O., et al. A haptic feedback system for lower-limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 16 (3), 270-277 (2008).
  10. Sharma, A., Torres-moreno, R., Zabjek, K., Andrysek, J. Toward an artificial sensory feedback system for prosthetic mobility rehabilitation: Examination of sensorimotor responses. J. Rehabil. Res. Dev. 51 (6), 416-425 (2014).
  11. Sharma, A., Leineweber, M. J., Andrysek, J. The effects of cognitive load and prosthetic liner on volitional response times to vibrotactile feedback. J. Rehabil. Res. Dev. , (2016).
  12. Crea, S., Cipriani, C., Donati, M., Carrozza, M. C., Vitiello, N. Providing Time-Discrete Gait Information by Wearable Feedback Apparatus for Lower-Limb Amputees: Usability and Functional Validation. IEEE Trans. Neural Syst. Rehabil. Eng. 23 (2), 250-257 (2015).
  13. Bolanowski, S. J., Gescheider, G. A., Verrillo, R. T., Checkosky, C. M. Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84 (5), 1680-1694 (1988).
  14. Giggins, O. M., Persson, U. M., Caulfield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 10 (1), 60 (2013).
  15. Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., Delp, S. L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 40 (1), 11-19 (2014).
  16. Goodworth, A. D., Peterka, R. J. Sensorimotor integration for multisegmental frontal plane balance control in humans. J. Neurophysiol. 107 (1), 12-28 (2012).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved