A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Utilizing patient-derived tumors in a subcutaneous preclinical model is an excellent way to study the efficacy of novel therapies, predictive biomarker discovery, and drug resistant pathways. This model, in the drug development process, is essential in determining the fate of many novel anti-cancer therapies prior to clinical investigation.
Patient derived tumor xenograft (PDTX) models provide a necessary platform in facilitating anti-cancer drug development prior to human trials. Human tumor pieces are injected subcutaneously into athymic nude mice (immunocompromised, T cell deficient) to create a bank of tumors and subsequently are passaged into different generations of mice in order to maintain these tumors from patients. Importantly, cellular heterogeneity of the original tumor is closely emulated in this model, which provides a more clinically relevant model for evaluation of drug efficacy studies (single agent and combination), biomarker analysis, resistant pathways and cancer stem cell biology. Some limitations of the PDTX model include the replacement of the human stroma with mouse stroma after the first generation in mice, inability to investigate treatment effects on metastasis due to the subcutaneous injections of the tumors, and the lack of evaluation of immunotherapies due to the use of immunocompromised mice. However, even with these limitations, the PDTX model provides a powerful preclinical platform in the drug discovery process.
Colorectal cancer (CRC) is a significant contributor to cancer deaths in the United States. In 2015, there were an estimated 132,700 new cases of CRC with 49,700 deaths 1. Although the prognosis in patients with localized disease is excellent, patients with advanced disease have poor outcomes, making this a major priority in the development of novel therapies. Despite standard of care chemotherapeutic regimens and newer biologics that are deployed against this disease, there has been only an incremental increase in overall survival. Accordingly, there is a significant effort in understanding the driver pathways involved in facilitating tumor growth in this disease. The Cancer Genome Atlas Network has recently identified numerous main pathways that are implicated in CRC dysregulation and include: WNT, phosphoinositide 3-kinase (PI3K), RAS, transforming growth factor-β (TGF- β) and TP53 2. Together, with investigations describing other pathways that potentiate growth in CRC have ignited the development of newer therapies aimed at significantly improving the survival in this patient population 3-5. Utilizing preclinical models in oncology drug development have been essential in this process in predicting the clinical activity of these novel compounds.
Various preclinical models have been utilized in the drug development process. Considering that preclinical transgenic animal models and immortalized cell lines have been unsuccessful in determining the clinical activity of novel oncology therapies, largely due to their inability to reflect the complexity of human tumors, patient-derived tumor xenograft (PDTX) models have been established. The greatest advantage of this model is that tumor heterogeneity remains intact and closely reflects the molecular characteristics and clonality of the originating patient tumor 6-9. PDTX models provide an excellent in vivo preclinical platform to study novel agents, drug resistance pathways, combinational strategies, and cancer stem cell biology 10.
A general overview of the PDTX process is illustrated in Figure 1. It begins in the clinic, consenting patients to allow some of their excess tumor tissue to be used for this research. Next, at surgery, a piece of the tumor is grossed by a pathologist and put into media to be transported to research personnel. Immediately after this, a section of the tumor is cut into small pieces and transplanted into immunodeficient mice subcutaneously. Once the tumor grows, it is passaged into different generations of mice in order to maintain the tumor10. Typically, after the F3 generation the tumor can be expanded into a treatment study where novel compounds and/or combinational therapies are evaluated. Utilizing Next Gen Seq (Exome Seq, RNA Seq and SNP array) potential predictive biomarkers are discovered that assist in the selection of patients that may derive benefit from a particular treatment.
The overarching goals of using PDTX models are to: 1) evaluate the efficacy of novel therapies as single agent or in combination and 2) identify predictive biomarkers of sensitivity or resistance prior to clinical investigation. In this manuscript, we provide the methodology in the initiation and maintenance of a CRC PDTX bank and provide the advantages and limitations of this model in drug development discovery.
Figure 1. Overview of the CRC PDTX Model Protocol. A patient derived tumor is received from surgery and immediately injected into athymic nude mice subcutaneously. Once the tumor grows it is expanded into subsequent generations and eventually expanded for treatment studies. Treatment responses are assessed and predictive biomarkers are identified that may aid in patient selection. Please click here to view a larger version of this figure.
Ethics Statement: Patient-derived colorectal adenocarcinoma tumor specimens were obtained from consenting patients at the University of Colorado Hospital in accordance with a protocol approved by the Colorado Multiple Institutional Review Board (08-0439). All animal work was performed under animal protocols approved by the University of Colorado Denver Institutional Animal Care and Use Committee (IACUC, Protocol # 51412(06)1E and 96813(04)1E).
1. Receiving and Preparing Patient Blood
2. Receiving and Preparing Patient Tumor Sample
3. Injection of Patient Derived Tumor Xenografts
4. Maintenance of Patient Derived Tumor Xenograft Bank
5. Developmental Therapeutics with Patient Derived Tumor Xenografts
Note: Most tumors at F3 generation have good growth kinetics (grow faster and more consistent), therefore, proceed to PDTX drug efficacy studies.
6. Organization of a PDTX bank
Similarities of Common Mutations in the CRC PDTX Models and the TCGA
We investigated whether the percentage of common mutations (KRAS, NRAS, BRAF, PIK3CA, APC, CTNNB1 and TP53) in the CRC PDTX bank were representative to the mutation frequency seen in the CRC patient population. As shown in Figure 2A (TCGA) and B (CRC PDTX bank), the frequency of mutations in these gene...
The PDTX drug discovery platform offers an improved model to the shortcomings of other preclinical models that are unreliable in predicting clinical activity of novel compounds. Importantly, tumors in this model are biologically stable, retain metastatic potential, and exhibit similar drug responsiveness from generation to generation. In this model, patient derived tumors are injected into athymic nude mice, passaged, and subsequently used in therapeutic evaluation. There are several critical steps for a successful PDTX ...
The authors have nothing to disclose.
This work was supported by grant 1R01CA152303-01.
Name | Company | Catalog Number | Comments |
RPMI or DMEM | Corning | 10-040-CV | |
Penicillin-Streptomycin | Corning | 30-002-CI | |
Non-essential Amino Acids | Corning | 25-025-CI | |
Fetal Bovine Serum | Corning | 35-010-CV | Thaw in -4 °C, then activate for 30 min at 60 °C water bath |
CPT blood tube | BD vacutainer | 362761 | |
Microcentrifuge tube | Surelock | A-7002 | |
Phosphate-Buffered Saline | Corning | 21-040-CV | |
Cyrogenic vials | Cyroking | C0732901 | |
Plastic tumor cutting dish | Trueline | TR4001 | |
Scissors | Roboz | RS-5881 | |
Forceps | Roboz | RS-5135 | |
Matrigel (gelatinous protein mixture) | Corning | 354234 | Store at -20 or -80 °C, then thaw on ice, do not leave at RT |
10% Formalin cups | Protocol | 032-059 | |
Liquid Nitrogen Dewar Storage | Thermolyne | CY50900 | |
Portable liquid nitrogen dewar | Nalgene | 4150-2000 | |
Dimethyl Sulfoxide | Fischer | 67-68-5 | |
Freezing container: Mr Frosty | Nalgene | 5100-0001 | |
Isopropyl Alcohol | Decon | 64-17-5 | |
Trocars | Innovative Research of America | MP-182 | |
Anesthesia machine | Patterson Veterinary | ||
Anesthesia box | Patterson Veterinary | ||
Isoflurane | Vet one | 1038005 | |
F-Air Canister | Bickford Omnicon | 80120 | |
Meloxicam | Vet one | 5182-90C | |
Calipers | Fowler | 54-100-167 | |
Weight scale | Ohaus | Scout Pro SP601 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved