JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Cancer Research

Development and Maintenance of a Preclinical Patient Derived Tumor Xenograft Model for the Investigation of Novel Anti-Cancer Therapies

Published: September 30th, 2016



1Medicine, University of Colorado Denver Anschutz Medical Campus

Utilizing patient-derived tumors in a subcutaneous preclinical model is an excellent way to study the efficacy of novel therapies, predictive biomarker discovery, and drug resistant pathways. This model, in the drug development process, is essential in determining the fate of many novel anti-cancer therapies prior to clinical investigation.

Patient derived tumor xenograft (PDTX) models provide a necessary platform in facilitating anti-cancer drug development prior to human trials. Human tumor pieces are injected subcutaneously into athymic nude mice (immunocompromised, T cell deficient) to create a bank of tumors and subsequently are passaged into different generations of mice in order to maintain these tumors from patients. Importantly, cellular heterogeneity of the original tumor is closely emulated in this model, which provides a more clinically relevant model for evaluation of drug efficacy studies (single agent and combination), biomarker analysis, resistant pathways and cancer stem cell biology. Some limitations of the PDTX model include the replacement of the human stroma with mouse stroma after the first generation in mice, inability to investigate treatment effects on metastasis due to the subcutaneous injections of the tumors, and the lack of evaluation of immunotherapies due to the use of immunocompromised mice. However, even with these limitations, the PDTX model provides a powerful preclinical platform in the drug discovery process.

Colorectal cancer (CRC) is a significant contributor to cancer deaths in the United States. In 2015, there were an estimated 132,700 new cases of CRC with 49,700 deaths 1. Although the prognosis in patients with localized disease is excellent, patients with advanced disease have poor outcomes, making this a major priority in the development of novel therapies. Despite standard of care chemotherapeutic regimens and newer biologics that are deployed against this disease, there has been only an incremental increase in overall survival. Accordingly, there is a significant effort in understanding the driver pathways involved in facilitating tumor growth in this ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ethics Statement: Patient-derived colorectal adenocarcinoma tumor specimens were obtained from consenting patients at the University of Colorado Hospital in accordance with a protocol approved by the Colorado Multiple Institutional Review Board (08-0439). All animal work was performed under animal protocols approved by the University of Colorado Denver Institutional Animal Care and Use Committee (IACUC, Protocol # 51412(06)1E and 96813(04)1E).

1. Receiving and Preparing Patient Blood


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Similarities of Common Mutations in the CRC PDTX Models and the TCGA

We investigated whether the percentage of common mutations (KRAS, NRAS, BRAF, PIK3CA, APC, CTNNB1 and TP53) in the CRC PDTX bank were representative to the mutation frequency seen in the CRC patient population. As shown in Figure 2A (TCGA) and B (CRC PDTX bank), the frequency of mutations in these gene.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The PDTX drug discovery platform offers an improved model to the shortcomings of other preclinical models that are unreliable in predicting clinical activity of novel compounds. Importantly, tumors in this model are biologically stable, retain metastatic potential, and exhibit similar drug responsiveness from generation to generation. In this model, patient derived tumors are injected into athymic nude mice, passaged, and subsequently used in therapeutic evaluation. There are several critical steps for a successful PDTX .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by grant 1R01CA152303-01.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
RPMI or DMEM Corning 10-040-CV
Penicillin-Streptomycin Corning 30-002-CI
Non-essential Amino Acids Corning 25-025-CI
Fetal Bovine Serum Corning 35-010-CV Thaw in -4 °C, then activate for 30 minutes at 60 °C water bath
CPT blood tube BD vacutainer 362761
Microcentrifuge tube Surelock A-7002
Phospate-Buffered Saline Corning 21-040-CV
Cyrogenic vials Cyroking C0732901
Plastic tumor cutting dish Trueline TR4001
Scissors Roboz RS-5881
Forceps Roboz RS-5135
Matrigel (gelatinous protein mixture) Corning 354234 Store at -20 or -80 °C, then thaw on ice, do not leave at room temperature
10% Formalin cups Protocol 032-059
Liquid Nitrogen Dewar Storage Thermolyne CY50900
Portable liquid nitrogen dewar Nalgene 4150-2000
Dimethyl Sulfoxide Fischer 67-68-5
Freezing container: Mr Frosty Nalgene 5100-0001
Isopropyl Alcohol Decon 64-17-5
Trocars Innovative Research of America MP-182
Anesthesia machine Patterson Veterinary none
Anesthesia box Patterson Veterinary none
Isoflurane Vet one 1038005
F-Air Canister Bickford Omnicon 80120
Meloxicam Vet one 5182-90C
Calipers Fowler 54-100-167
Weight scale Ohaus Scout Pro SP601

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics. 2015. CA Cancer J Clin. 65 (1), 5-29 (2015).
  2. . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487 (7407), 330-337 (2012).
  3. Arcaroli, J. J., et al. Tumours with elevated levels of the Notch and Wnt pathways exhibit efficacy to PF-03084014, a gamma-secretase inhibitor, in a preclinical colorectal explant model. Br J Cancer. 109 (3), 667-675 (2013).
  4. Hubbard, J., Grothey, A. Antiangiogenesis agents in colorectal cancer. Curr Opin Oncol. 22 (4), 374-380 (2010).
  5. van Es, J. H., et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 435 (7044), 959-963 (2005).
  6. Cassidy, J. W., Caldas, C., Bruna, A. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Res. 75 (15), 2963-2968 (2015).
  7. Jin, K., et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 12 (7), 473-480 (2010).
  8. Julien, S., et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 18 (19), 5314-5328 (2012).
  9. Siolas, D., Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73 (17), 5315-5319 (2013).
  10. Tentler, J. J., et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 9 (6), 338-350 (2012).
  11. Carson, F. L. . Histotechnology: A Self-Assessment Workbook. , (1996).
  12. Arcaroli, J. J., et al. Common PIK3CA mutants and a novel 3' UTR mutation are associated with increased sensitivity to saracatinib. Clin Cancer Res. 18 (9), 2704-2714 (2012).
  13. Arcaroli, J. J., et al. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer. Int J Cancer. 138 (1), 195-205 (2016).
  14. Arcaroli, J. J., et al. Gene array and fluorescence in situ hybridization biomarkers of activity of saracatinib (AZD0530), a Src inhibitor, in a preclinical model of colorectal cancer. Clin Cancer Res. 16 (16), 4165-4177 (2010).
  15. Lieu, C. H., et al. Antitumor activity of a potent MEK inhibitor, TAK-733, against colorectal cancer cell lines and patient derived xenografts. Oncotarget. 6 (33), 34561-34572 (2015).
  16. Pitts, T. M., et al. Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models. Front Pharmacol. 4, 35 (2013).
  17. Song, E. K., et al. Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in a colorectal cancer patient-derived tumor explant model. Int J Cancer. 136 (8), 1967-1975 (2015).
  18. Tentler, J. J., et al. Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer. Mol Cancer Ther. 9 (12), 3351-3362 (2010).
  19. Bardelli, A., et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3 (6), 658-673 (2013).
  20. Bertotti, A., et al. A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1 (6), 508-523 (2011).
  21. Davis, S. L., et al. Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer models. Front Pharmacol. 6, 120 (2015).
  22. Morelli, M. P., et al. Preclinical activity of the rational combination of selumetinib (AZD6244) in combination with vorinostat in KRAS-mutant colorectal cancer models. Clin Cancer Res. 18 (4), 1051-1062 (2012).
  23. Pitts, T. M., et al. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One. 9 (11), e113037 (2014).
  24. Spreafico, A., et al. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin Cancer Res. 19 (15), 4149-4162 (2013).
  25. Arcaroli, J. J., et al. ALDH+ tumor-initiating cells exhibiting gain in NOTCH1 gene copy number have enhanced regrowth sensitivity to a gamma-secretase inhibitor and irinotecan in colorectal cancer. Mol Oncol. 6 (3), 370-381 (2012).
  26. Hoey, T., et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 5 (2), 168-177 (2009).
  27. Ikebuchi, F., et al. Dissociation of c-Met phosphotyrosine sites in human cells in response to mouse hepatocyte growth factor but not human hepatocyte growth factor: the possible roles of different amino acids in different species. Cell Biochem Funct. 31 (4), 298-304 (2013).
  28. Zhang, Y. W., et al. Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene. 24 (1), 101-106 (2005).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved