A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Murine full-thickness skin transplantation is a well-established model to study rejection in an alloimmune setting. Here, we provide a tutorial of each step involved in performing a BALB/c-->C57BL/6 full-thickness skin transplant.
Murine full-thickness skin transplantation is a well-established in vivo model to study alloimmune response and graft rejection. Despite its limited application to humans, skin transplantation in mice has been widely employed for transplantation research. The procedure is easy to learn and perform, and it does not require delicate microsurgical techniques nor extensive training. Moreover, graft rejection in this model occurs in a very reproducible immunological reaction and is easily monitored by direct inspection and palpation. In addition, secondary skin transplantation with donor-matched or third-party skin grafts can be performed on more complex transplant models as an alternative and uncomplicated method to assess donor-specific tolerance. The complications are low and are in general limited to anesthesia overdose or respiratory distress after the procedure. Graft failure, on the other hand, occurs commonly as a result of poor preparation of the graft, incorrect positioning in the graft bed, or inappropriate placement of the bandage. In this article, we present a protocol for full-thickness skin transplantation in mice and describe the important steps necessary for a successful procedure.
Organ transplantation is the treatment of choice for patients with end-stage organ failure, and outcomes have improved remarkably with advances in surgical procedures and immunosuppression protocols. However, long-term immunosuppression is associated with significant side effects, and the development of new strategies that promote tolerance remains the goal of modern transplantation research.
Numerous animal models have been developed for basic research in transplantation, to study the mechanisms of allograft rejection and to test immunosuppression approaches for preventing graft rejection and for promoting long-term tolerance1-3. Mouse models have become the mainstay of immunological research due to the exclusive and vast availability of diagnostic and therapeutic antibodies and well-defined inbred and transgenic strains. Skin transplantation is a simple procedure that does not require special microsurgical skills and can be easily monitored postoperatively. Taken together, mouse skin transplantation has been an exceptional tool to study many aspects involved in the alloimmune response, including antigen delivery, cell trafficking, and tissue destruction during graft rejection4,5.
Here, we show the step-by-step procedure for full-thickness skin transplantation using the mouse model, and we describe the important steps necessary for a successful engraftment of the transplanted skin.
All procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institute of Health (NIH) and were approved by the Johns Hopkins University Animal Care and Use Committee (JHUACUC). The specific procedures were performed under the approved ACUC protocols MO13M292 and MO13M370.
1. Donor Skin Harvest
2. Recipient Skin Transplant
3. Postoperative Care
The placement of the bandage on the recipient mouse is an important step of the procedure. The skin graft is positioned on the recipient trunk, between the shoulder, hip, and spine (Figure 1). The bandage is made with folded gauze and the combination of two plastic adhesive bandages. The recipient mouse is placed with the graft down over the gauze on the center of the bandage. Using two curved micro forceps, the lower end of the bandage is pulled first, and then the top o...
Since its introduction by Medawar, first in human studies and then in rabbits and mice, skin transplantation has been an invaluable model for the study of allogeneic immune responses6,7. In this manuscript, we present a model of large-scale, non-vascularized, full-thickness skin transplantation using the upper and lower back skin. Various alternative methods, including using the tail skin or ear skin of the mouse as the graft tissue source, have been reported to date8,9. These models present the dis...
The authors have nothing to disclose.
This work was funded by NIH grant R01AI077610.
Name | Company | Catalog Number | Comments |
Straight micro forceps | Sigma | F4017 | |
Curved micro forceps | Aesculap | BD333R | |
Curved Stevens tenotomy scissors | Aesculap | BC905R | |
Mayo dissecting scissors | Sigma | S3146 | |
Micro needle holder | Aesculap | BM563R | |
Sterile gauze | Covidien | 441218 | |
6-0 Nylon suture | MWI | 31849 | |
Plastic Strips Band-Aid | Johnson & Johnson | Obtained from pharmacy | |
10 cm Petri dish | Fisherbrand | FB0875712 | |
PBS | Quality Biological | 119069131 | |
Buprenorphine | DEA Number required; Obtained from hospital pharmacy | ||
Enrofloxacin | Bayer Health Care | 186599 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved