A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We show a technique for in vivo live bioluminescence and near-infrared imaging of optic neuritis and encephalitis in the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis in SJL/J mice.
Experimental autoimmune encephalomyelitis (EAE) in SJL/J mice is a model for relapsing-remitting multiple sclerosis (RRMS). Clinical EAE scores describing motor function deficits are basic readouts of the immune-mediated inflammation of the spinal cord. However, scores and body weight do not allow for an in vivo assessment of brain inflammation and optic neuritis. The latter is an early and frequent manifestation in about 2/3 of MS patients. Here, we show methods for bioluminescence and near-infrared live imaging to assess EAE evoked optic neuritis, brain inflammation, and blood-brain barrier (BBB) disruption in living mice using an in vivo imaging system. A bioluminescent substrate activated by oxidases primarily showed optic neuritis. The signal was specific and allowed the visualization of medication effects and disease time courses, which paralleled the clinical scores. Pegylated fluorescent nanoparticles that remained within the vasculature for extended periods of time were used to assess the BBB integrity. Near-infrared imaging revealed a BBB leak at the peak of the disease. The signal was the strongest around the eyes. A near-infrared substrate for matrix metalloproteinases was used to assess EAE-evoked inflammation. Auto-fluorescence interfered with the signal, requiring spectral unmixing for quantification. Overall, bioluminescence imaging was a reliable method to assess EAE-associated optic neuritis and medication effects and was superior to the near-infrared techniques in terms of signal specificity, robustness, ease of quantification, and cost.
Multiple sclerosis is caused by the autoimmune-mediated attack and destruction of the myelin sheath in the brain and the spinal cord1. With an overall incidence of about 3.6 cases per 100,000 people a year in women and about 2.0 in men, MS is the second most common cause of neurological disability in young adults, after traumatic injuries2,3. The disease pathology is contributed to by genetic and environmental factors4 but is still not completely understood. Autoreactive T lymphocytes enter the central nervous system and trigger an inflammatory cascade that causes focal infiltrates in the white matter of the brain, spinal cord, and optic nerve. In most cases, these infiltrates are initially reversible, but persistence increases with the number of relapses. A number of rodent models have been developed to study the pathology of the disease. The relapsing-remitting EAE in SJL/J mice and the primary-progressive EAE in C57BL6 mice are the most popular models.
The clinical EAE scores, which describe the extent of the motor function deficits, and body weight are the gold standards to assess EAE severity. These clinical signs agree with the extent of immune cell infiltration and myelin destruction in the spinal cord and moderately predict drug treatment efficacy in humans5. However, these signs mainly reflect the destruction of the ventral fiber tracts in the spinal cord. Presently, there is no easy, non-invasive, reliable, and reproducible method to assess in vivo brain infiltration and optic neuritis in living mice.
The in vivo imaging agrees with the 3 "R" principles of Russel and Burch (1959), which claim a Replacement, Reduction, and Refinement of animal experiments6, because imaging increases the readouts of one animal at several time points and allows for a reduction of the overall numbers. Presently, inflammation or myelin status is mainly assessed ex vivo via immunohistochemistry, FACS-analysis, or different molecular biological methods7, all requiring euthanized mice at specific time points.
A number of in vivo imaging system probes have been developed to assess inflammation in the skin, joints, and vascular system. The techniques rely on the activation of bioluminescent or near-infrared fluorescent substrates by tissue peroxidases, including myeloperoxidase (MPO), matrix metalloproteinases (MMPs)8, and cathepsins9 or cyclooxygenase2. These probes have been mainly validated in models of arthritis or atherosclerosis9,10. A cathepsin-sensitive probe has also been used for fluorescence molecular tomographic imaging of EAE11. MMPs, particularly MMP2 and MMP9, contribute to the protease-mediated BBB disruption in EAE and are upregulated at sites of immune cell infiltration12, suggesting that these probes may be useful for EAE imaging. The same holds true for peroxidase or cathepsin-based probes. Technically, imaging of inflammation in the brain or spinal cord is substantially more challenging because the skull or spine absorb bioluminescent and near-infrared signals.
In addition to inflammation indicators, fluorescent chemicals have been described, which specifically bind to myelin and may allow for quantification of myelination13. A near-infrared fluorescent probe, 3,3'-diethylthiatricarbocyanine iodide (DBT), was found to specifically bind to myelinated fibers and was validated as a quantitative tool in mouse models of primary myelination defects and in cuprizone-evoked demyelination14. In EAE, the DBT signal was rather increased, reflecting the inflammation of the myelin fibers5.
An additional hallmark of EAE and MS is the BBB breakdown, resulting in increased vascular permeability and the extravasation of blood cells, extracellular fluid, and macromolecules into the CNS parenchyma. This can lead to edema, inflammation, oligodendrocyte damage, and, eventually, demyelination15,16. Hence, visualization of the BBB leak using fluorescent probes, such as fluorochrome-labeled bovine serum albumin5, which normally distribute very slowly from blood to tissue, may be useful to assess EAE.
In the present study, we have assessed the usefulness of different probes in EAE and show the procedure for the most reliable and robust bioluminescent technique. In addition, we discuss the pros and cons of near-infrared probes for MMP activity and BBB integrity.
1. EAE Induction in SJL/J Mice
2. Bioluminescent and Near-infrared Imaging of Optic Neuritis and Brain Inflammation
3. Image Analyses
Time Course of Bioluminescence of Optic Neuritis
The bioluminescence signal of the inflammation probe was the strongest around the eyes and occurred exclusively in EAE mice with optic neuritis. A signal occurred in neither the non-EAE mice nor the mice not injected with the inflammation probe. The signal disappeared when the mice recovered. Hence, the signal is specific for optic neuritis, and the peak of the si...
The present video shows techniques for bioluminescence and near-infrared fluorescence in vivo imaging of EAE in SJL/J mice. We show that bioluminescence imaging using an inflammation-sensitive probe mainly shows optic neuritis, and the quantification agrees with the clinical evaluation of EAE severity and the effects of medication. However, the bioluminescence imaging method was not able to detect inflammation of the lumbar spinal cord, which is a primary site of EAE manifestation17, like...
The authors declare that they have no competing financial interests.
This research was supported by the Deutsche Forschungsgemeinschaft (CRC1039 A3) and the research funding program "Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz" (LOEWE) of the State of Hessen, Research Center for Translational Medicine and Pharmacology TMP and the Else Kröner-Fresenius Foundation (EKFS), Research Training Group Translational Research Innovation - Pharma (TRIP).
Name | Company | Catalog Number | Comments |
AngioSpark-680 | Perkin Elmer, Inc., Waltham, USA | NEV10149 | Imaging probe, pegylated nanoparticles, useful for imaging of blood brain barrier integrity |
MMP-sense 680 | Perkin Elmer, Inc., Waltham, USA | NEV10126 | Imaging probe, activatable by matrix metalloproteinases, useful for imaging of inflammation |
XenoLight RediJect Inflammation Probe | Perkin Elmer, Inc., Waltham, USA | 760535 | Imaging probe, activatable by oxidases, useful for imaging of inflammation |
PLP139-151/CFA emulsion | Hooke Labs, St Lawrence, MA | EK-0123 | EAE induction kit |
Pertussis Toxin | Hooke Labs, St Lawrence, MA | EK-0123 | EAE induction kit |
IVIS Lumina Spectrum | Perkin Elmer, Inc., Waltham, USA | Bioluminescence and Infrared Imaging System | |
LivingImage 4.5 software | Perkin Elmer, Inc., Waltham, USA | CLS136334 | IVIS analysis software |
Isoflurane | Abbott Labs, Illinois, USA | 26675-46-7 | Anaesthetic |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved