A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol was developed to quantitatively identify tumor microenvironment components in glioblastoma patient resections using chromogenic immunohistochemistry and ImageJ.
With the growing interest in the tumor microenvironment, we set out to develop a method to specifically determine the microenvironment components within patient samples of glioblastoma, the deadliest and most invasive brain cancer. Not only are quantitative methods beneficial for accurately describing diseased tissues, they can also potentially contribute to more accurate prognosis, diagnosis, and the development of tissue-engineered systems and replacements. In glioblastoma, glial cells, such as microglia and astrocytes, have been independently correlated with poor prognosis based on pathologist grading. However, the state of these cells and other glial cell components has not been well-described quantitatively. This can be difficult due to the large processes that mark these glial cells. Furthermore, most histological analyses focus on the overall tissue sample or only within the bulk of the tumor, as opposed to delineating quantifications based on regions within the highly heterogeneous tissue. Here, we describe a method for identifying and quantitatively analyzing the populations of glial cells within the tumor bulk and adjacent regions of tumor resections from glioblastoma patients. We used chromogenic immunohistochemistry to identify the glial cell populations in patient tumor resections and ImageJ to analyze percent coverage of staining for each glial population. With these techniques we are able to better describe the glial cells throughout regions of the glioma tumor microenvironment.
Glioblastoma (GBM), the most common and malignant brain cancer, is characterized by highly diffuse invasion from the primary tumor bulk into the surrounding healthy brain parenchyma1,2. This diffuse invasion makes the tumor particularly difficult to resect fully, and the invading cancer cells that remain post-therapy is the most common reason for inevitable recurrence2,3,4. Previously, we found inhibiting the diffuse glioma cell invasion to be therapeutically beneficial5, however little is known about the complex mechanisms contributing to GBM invasion. The tumor microenvironment, or tissue surrounding the cancer, has been implicated in the progression of tumors in multiple cancers6,7. The glioblastoma tumor microenvironment, in particular, is relatively under-characterized and is uniquely complex, composing of multiple glial cells, such as astrocytes, microglia, and oligodendrocytes, as well as extracellular matrix, soluble factors, and biophysical factors. Experimentally, astrocytes and microglia have been shown to increase glioma progression and invasion8,9,10, but the composition of all glial cells in the native human brain microenvironment is unknown.
We previously showed microenvironmental components can predict patient survival by quantitatively analyzing cellular components of the glioblastoma microenvironment and incorporating our analyses into a proportional hazards model11. Here, we describe the quantitative analysis method for identifying the populations of glial cells within the tumor bulk and adjacent regions of tumor resections from glioblastoma patients. We used chromogenic immunohistochemistry to identify the glial cell populations and ImageJ to analyze percent coverage of staining for each glial population. Assessing percent coverage creates a simple measurement for determining the morphological differences of cells, particularly those affected by interactions with cancer cells. Previous studies for quantifying histopathological staining use standard staining such as hematoxylin and eosin12 or Masson's trichrome13, which do not take advantage of the specificity of antibody-based immunohistochemistry staining. Our method was developed to directly quantify the glial populations within glioblastoma patient tumor resections, which we aim to use to elucidate the complex glioblastoma microenvironment.
This protocol identifies cellular components in formalin-fixed paraffin embedded (FFPE) samples, as is typical for banked clinical patient samples. Paraffin embedding allows for the best maintenance of cellular and tissue morphology as well as has better longevity of sections. The samples used for this analysis were accessed through the University of Virginia Biorepository and Tissue Research Facility. Patient samples were selected by a neuropathologist based on a definitive diagnosis of glioblastoma (astrocytoma, WHO grade IV) who had completed tumor resections at the University of Virginia between 2010 and 2013, and were de-identified prior to this analysis11.
1. FFPE Sample Deparaffinization and Rehydration
NOTE: This portion of the protocol is specific to FFPE samples. While paraffin-embedded samples can be more useful for this analysis because of the preservation of cellular and tissue morphology, this analysis can also be done with frozen sections. If using frozen sections, this portion can be omitted and proceed directly to chromogenic immunohistochemistry.
2. Antigen Retrieval
NOTE: This portion of the protocol is necessary to break methylene bridges formed during formalin fixation of FFPE samples and expose antigen sites for antibodies to bind.
3. Chromogenic Immunohistochemistry
4. Regions of Interest Identification
5. Image Analysis
For this analysis, two regions of interests within our tumor resections - the primary tumor bulk and the adjacent regions, primarily composed of healthy tissue with diffuse invading cancer cells (Figure 1A, 1B) - were identified by collaborating neuropathologists on hematoxylin and eosin stained patient samples. Within each patient sample, positive staining for astrocytes (Figure 1C), microglia (
Our method proposed here is a quantitative approach to analyzing histological samples stained using traditional chromogenic immunohistochemistry. Current methodology for this type of analysis includes similar staining protocols followed by grading by independent pathologists. This method has been reliable, yet for a number of applications, a more precise understanding of the cellular make-up is required, such as better understanding of the heterogeneity associated with tumors and accurate recapitulation of tumors for in ...
None.
The authors thank Drs. Fahad Bafakih and Jim Mandell for acquisition and identification of patient samples, Garrett F. Beeghly for assistance with immunohistochemistry, and the Biorepository and Tissue Research Facility, the Cardiovascular Research Center Histology Core, and the Biomolecular Analysis Facility at the University of Virginia for assistance with sample acquisition, immunohistochemistry, and imaging.
Name | Company | Catalog Number | Comments |
Xylene | Fisher Chemical | X3P | |
Ethanol | |||
High pH antigen unmasking solution | Vector Labs | H-3301 | |
TBS | |||
Triton-X | Amresco | 9002-93-1 | |
Horse serum | |||
Anti-ALDH1L1 | abcam | ab56777 | |
Anti-Iba1 | abcam | ab5076 | |
Anti-Oligodendrocyte Specific Protein1 | abcam | ab53041 | |
ImmPRESS anti-goat | Vector Labs | MP-7405 | |
ImmPRESS Universal (anti-mouse/rabbit) | Vector Labs | MP-7500 | |
Hydrogen peroxide | Sigma Aldrich | 216763 | |
ImmPACT DAB substrate | Vector Labs | SK-4105 | |
Hematoxylin counterstain | ThermoScientific | 72404 | |
Histochoice Mounting Media | Amresco | H157-475 | |
Aperio Scanscope | Leica Biosystems | ||
Image Scanscope | Leica Biosystems | ||
Super HT PAP Pen | Research Products International | 195506 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved